

Welcome to Krake’s documentation!

Contents:

	Quickstart

	User Documentation
	Rok documentation
	The kube API

	The infra API

	Common options

	Warnings

	Configuration
	Configuration file or command-line options

	Krake configuration

	Controllers configuration

	Common configuration:

	Rok configuration

	Custom Observer Schema
	Purpose

	Format

	Usage

	User Stories
	Introduction

	Demonstration of basic commands and workflow

	Scheduling an Application using Labels and LabelConstraints

	Scheduling an Application Using Metrics

	OpenStack backends

	Creation and deployment of a stateful application

	Infrastructure providers

	Scheduling a Cluster using Labels and LabelConstraints

	Scheduling a Cluster using Metrics

	Horizontal Cluster Scaling

	HTTP Problem documentation
	not-found-error

	transaction-error

	update-error

	invalid-keystone-token

	invalid-keycloak-token

	resource-already-exists

	Administrator Documentation
	Set up Krake with Ansible
	Prerequisites

	Krake infrastructure deployment

	Krake Ansible directory structure

	Access through the gateway

	Variables
	Variables definition

	Inventory
	Inventory plugin

	Inventory structure

	Bootstrapping
	Usage

	Structure

	Existing definitions

	Security principles
	Overview

	Keystone authentication

	Keycloak authentication

	Certificate authentication

	RBAC Authorization

	Security Guidelines

	CORS

	Developer Documentation
	Architecture
	API

	Control Plane

	Concepts
	Overview

	API Conventions

	Control Plane

	Authentication and Authorization

	Directories

	Design Principles
	API

	Control Logic

	Architecture

	Extensibility

	Availability

	Development

	Scheduling
	Application handler

	Cluster handler

	Magnum cluster handler

	Metrics and Metrics Providers

	Constraints

	Application hooks
	Complete

	Shutdown

	TLS

	Examples

	Kubernetes Application Controller
	Reconciliation loop

	Kubernetes Application Observer
	Reconciliation

	Kubernetes Application Observer

	Kubernetes Cluster Controller

	Kubernetes Cluster Observer
	Kubernetes Cluster Status Polling

	States

	Node Health

	Infrastructure Controller
	Reconciliation loop

	States

	Garbage Collection
	Dependency mechanism

	Overview

	Garbage collection workflow

	Dependency graph

	API Generation
	Role

	Usage

	Templating

	Generated elements

	TOSCA
	Introduction

	TOSCA Template

	TOSCA/CSAR Workflow

	Examples

	Krake Reference
	Module hierarchy

	Krake

	API Server

	Client

	Controllers

	Data Abstraction

	Client Reference
	Fixtures

	Command Line Parser

Quickstart

A simple introduction to Krake can be found on the README [https://gitlab.com/rak-n-rok/krake/-/blob/master/README.md] on the official GitLab
repository. You can find there all the requirements and the different steps for the
installation, as well as some basic commands and initiatory explanations.

User Documentation

	Rok documentation

	Configuration

	Custom Observer Schema

	User Stories

	HTTP Problem documentation

Rok documentation

The Rok utility has a command line interface with a few specific commands, that can be added one after the other to refer to specific elements. The general syntax is

rok <api> <resource> <operation> <parameters>

The separate elements are:

	api element:

	The name of the Krake API used. Different APIs are present to handle different kind of resources. Example: kube for the Kubernetes API of Krake.

	resource element:

	The name of the resource managed. Each API holds one or several resources it can handle. Example: cluster for the Krake Clusters, which correspond to Kubernetes clusters.

	operation element:

	The verb used for the operation to apply. For instance list can be used to get all instances of one kind of resource, while delete can be used to remove a resource.

	parameters element:

	The specific argument for the current operation. For instance, the -o | --output argument change the format of the response.

A few examples:

$ rok kube <...> # handle the kubernetes API resources

$ rok kube app <...> # handle the Application resources of the Kubernetes API

Register a cluster with the Kubernetes API using the minikube.yaml kubeconfig
$ rok kube cluster register --kubeconfig ../minikube.yaml

Create a cluster with the Kubernetes API using the tosca.yaml manifest
$ rok kube cluster create --file ../tosca.yaml test-cluster

The kube API

This API can be used to manage Kubernetes clusters and start, update and delete applications on them, through Krake.

Base command: rok kube <...>

The Cluster resource: cluster

This resource manages Krake Cluster resources, which needs to be registered or created on Krake to be used.
It corresponds to a cluster on Kubernetes.

Base command: rok kube cluster <...>

	register

	Add an existing cluster to the Kubernetes clusters registered in Krake on a specified namespace. Example:

rok kube cluster register -k <path_to_kubeconfig_file>

-k | --kubeconfig: the path to the kubeconfig file that refers to the cluster to register.

	-n | --namespace (optional):

	The namespace to which the Cluster has to be added. If none is given, the user namespace is selected.

	-c | --context (optional):

	The name of the context to use from the kubeconfig file. Only one context can be
chosen at a time. If not context is specified, the current context of the
kubeconfig file is chosen.

	--global-metric (optional):

	The name and weight of of a global cluster metric in the form: <name> <weight>.
Can be specified multiple times.

	-m | --metric (optional):

	The name and weight of a cluster metric in the form: <name> <weight>.
Can be specified multiple times.

	-l | --label (optional):

	The key and the value of a cluster label in the form: <key>=<value>.
Can be specified multiple times.

	-R | --custom-resource (optional):

	The name of custom resources definition in the form: <plural>.<group> which is supported by the cluster.
Can be specified multiple times.

	create

	Add a new cluster to the Kubernetes clusters registered in Krake on a specified namespace. Example:

rok kube cluster create <cluster_name> -f <path_to_tosca_template>

	name:

	The name of the new Cluster, as stored by Krake (can be arbitrary). The same name cannot be used twice in the same namespace.

	-f | --file:

	The path to the TOSCA template file that describes the desired Cluster.

	-n | --namespace (optional):

	The namespace to which the Cluster has to be added. If none is given, the user namespace is selected.

	--global-metric (optional):

	The name and weight of a global cluster metric in the form: <name> <weight>.
Can be specified multiple times.

	-m | --metric (optional):

	The name and weight of a cluster metric in the form: <name> <weight>.
Can be specified multiple times.

	-l | --label (optional):

	The key and the value of a cluster label in the form: <key>=<value>.
Can be specified multiple times.

	-R | --custom-resource (optional):

	The name of custom resources definition in the form: <plural>.<group> which is supported by the cluster. Can be specified multiple times.

	-L | --cloud-label-constraint (optional):

	The name and value of a constraint for labels of the cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud that matches the given label constraint. Can be specified multiple times, see Constraints.

	-M | --cloud-metric-constraint (optional):

	The name and value of a constraint for metrics of the cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud that matches the given metric constraint. Can be specified multiple times, see Constraints.

	--backoff (optional): multiplier applied to backoff_delay between attempts.

	default: 1 (no backoff)

backoff_delay (optional): delay [s] between attempts. default: 1

backoff_limit (optional): a maximal number of attempts. If the attempt to handle the cluster failed, it will transfer to the Cluster State DEGRADED, instead of directly going into the State OFFLINE. Default: -1 (infinite) default: -1 (infinite)

	list

	List all Cluster of a namespace.

	-n | --namespace (optional):

	The namespace from which the Clusters have to be listed. If none is given, the user namespace is selected.

	get

	Request information about a specific Cluster.

	name:

	The name of the Cluster to fetch.

	-n | --namespace (optional):

	The namespace from which the Clusters have to be retrieved. If none is given,
the user namespace is selected.

	update

	Request a change of the current state of an existing Cluster.

	name:

	The name of the Cluster to update.

	-k | --kubeconfig (optional):

	The path to the kubeconfig file that describes the Cluster with the updated
fields.

	-f | --file (optional):

	The path to the TOSCA template file that describes the desired Cluster with the updated
fields.

	-n | --namespace (optional):

	The namespace from which the Clusters have to be taken. If none is given, the
user namespace is selected.

	-c | --context (optional):

	The name of the context to use from the kubeconfig file. Only one context can be
chosen at a time. If not context is specified, the current context of the
kubeconfig file is chosen.

	--global-metric (optional):

	The name and weight of a global cluster metric in the form: <name> <weight>.
Can be specified multiple times.

	-m | --metric (optional):

	The name and weight of a cluster metric in the form: <name> <weight>.
Can be specified multiple times.

	-l | --label (optional):

	The key and the value of a cluster label in the form: <key>=<value>.
Can be specified multiple times.

	-R | --custom-resource (optional):

	The name of custom resources definition in the form: <plural>.<group> which is supported by the cluster. Can be specified multiple times.

	-L | --cloud-label-constraint (optional):

	The name and value of a constraint for labels of the cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud that matches the given label constraint. Can be specified multiple times, see Constraints.

	-M | --cloud-metric-constraint (optional):

	The name and value of a constraint for metrics of the cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud that matches the given metric constraint. Can be specified multiple times, see Constraints.

	--backoff (optional): multiplier applied to backoff_delay between attempts.

	default: 1 (no backoff)

backoff_delay (optional): delay [s] between attempts. default: 1

backoff_limit (optional): a maximal number of attempts, default: -1 (infinite)

	delete

	Request the deletion of a specific Cluster from a namespace.

	-n | --namespace (optional):

	The namespace from which the Cluster have to be deleted. If none is given, the user namespace is selected.

	--force (optional):

	Force the deletion of resources directly from the Krake Database.

The Application resource: app

This resource manages Krake Applications resources, which need to be registered on Krake to be managed. It corresponds to a Kubernetes resource.

Tip

Krake is able to manage applications that are described by Kubernetes manifests files as well as by TOSCA templates or CSAR archives, see TOSCA.

Base command: rok kube app <...>

	create

	Add a new Application to the ones registered on Krake on a specified namespace. Example:

rok kube app create <application_name> -f <path_to_manifest_or_path_to_tosca_template>

	name:

	The name of the new Application, as stored by Krake (can be arbitrary). The same name cannot be used twice in the same namespace.

	-f | --file:

	The path to the manifest file or the TOSCA template file that describes the new Application.

	-u | --url:

	The URL of the TOSCA template file or the CSAR archive that describes the new Application.

	-O | --observer_schema (optional):

	The path to the custom observer schema file, specifying the fields of the
Kubernetes resources defined in the manifest file which should be observed. If none is given, all fields defined in the manifest file are observed.
The custom observer schema could be used even when the application is described by the TOSCA template or CSAR archive.

	-n | --namespace (optional):

	The namespace to which the Application has to be added. If none is given, the user namespace is selected.

	--hook-complete (optional):

	The complete hook, which allows an Application to send a completion signal to the API.

	--hook-shutdown (optional):

	The shutdown hook, which allows the graceful shutdown of the Application. Can have an additional timeout value after the argument.

	-R | --cluster-resource-constraint (optional):

	The name of custom resources definition constraint in form: <plural>.<group>. The application will be deployed only on the clusters with given custom definition support. Can be specified multiple times.

	-L | --cluster-label-constraint (optional):

	The name and value of a constraint for labels of the cluster in the form: <label> expression <value>. The application will be deployed only on the cluster that matches the given label constraint. Can be specified multiple times, see Constraints.

	-M | --cluster-metric-constraint (optional):

	The name and value of a constraint for metrics of the cluster in the form: <label> expression <value>. The application will be deployed only on the cluster that matches the given metric constraint. Can be specified multiple times, see Constraints.

	--backoff (optional): multiplier applied to backoff_delay between attempts to handle the application.

	default: 1 (no backoff)

backoff_delay (optional): delay [s] between attempts to handle the application. default: 1

backoff_limit (optional): a maximal number of attempts to handle the application. If the attempt to handle the application failed, it will transfer to the Application State DEGRADED, instead of directly going into the State FAILED. Default: -1 (infinite)

	list

	List all Applications of a namespace.

	-n | --namespace (optional):

	The namespace from which the Applications have to be listed. If none is given, the user namespace is selected.

	get

	Request information about a specific Application.

	name:

	The name of the Application to fetch.

	-n | --namespace (optional):

	The namespace from which the Applications have to be retrieved. If none is given, the user namespace is selected.

	update

	Request a change of the current state of an existing Application.

	name:

	The name of the Application to update.

	-f | --file:

	The path to the manifest file or TOSCA template file that describes the Application with the updated fields.

	-u | --url:

	The URL of the TOSCA template file or the CSAR archive that describes the Application with the updated fields.

	-O | --observer_schema (optional):

	The path to the custom observer schema file, specifying the fields of the
Kubernetes resources defined in the manifest file which should be observed. If none is given, the observer schema is not udpated.
The custom observer schema could be used even when the application is described by the TOSCA template or CSAR archive.

	-n | --namespace (optional):

	The namespace from which the Applications have to be taken. If none is given, the user namespace is selected.

	--hook-complete (optional):

	The complete hook, which allows an Application to send a completion signal to the API.

	--hook-shutdown (optional):

	The shutdown hook, which allows the graceful shutdown of the Application. Can have an additional timeout value after the argument.

	-R | --cluster-resource-constraint (optional):

	The name of custom resources definition constraint in form: <plural>.<group>. The application will be deployed only on the clusters with given custom definition support. Can be specified multiple times.

	-L | --cluster-label-constraint (optional):

	The name and value of a constraint for labels of the cluster in the form: <label> expression <value>. The application will be deployed only on the cluster that matches the given label constraint. Can be specified multiple times, see Constraints.

	-M | --cluster-metric-constraint (optional):

	The name and value of a constraint for metrics of the cluster in the form: <label> expression <value>. The application will be deployed only on the cluster that matches the given metric constraint. Can be specified multiple times, see Constraints.

	--backoff (optional): multiplier applied to backoff_delay between attempts.

	default: 1 (no backoff)

backoff_delay (optional): delay [s] between attempts. default: 1

backoff_limit (optional): a maximal number of attempts, default: -1 (infinite)

	delete

	Request the deletion of a specific Application from a namespace.

	name:

	The name of the Application to delete.

	-n | --namespace (optional):

	The namespace from which the Application have to be deleted. If none is given, the user namespace is selected.

	--force (optional):

	Force the deletion an Application directly from the Krake Database.

The infra API

This API can be used to manage the following infrastructure resources:

	GlobalInfrastructureProvider

	InfrastructureProvider

	GlobalCloud

	Cloud

Base command: rok infra <...>

The GlobalInfrastructureProvider resource: globalinfrastructureprovider

This resource manages Krake GlobalInfrastructureProvider non-namespaced resources,
which needs to be registered on Krake to be used. It corresponds to an infrastructure
provider software, that is able to deploy infrastructures (e.g. Virtual machines,
Kubernetes clusters, etc.) on IaaS Cloud deployments (e.g. OpenStack, AWS, etc.).

Krake currently supports the following GlobalInfrastructureProvider software (types):

	IM [https://github.com/grycap/im] (Infrastructure Manager) tool developed by the GRyCAP research group

Base command: rok infra globalinfrastructureprovider <...>
Available aliases:
- rok infra gprovider <...>
- rok infra gip <...>

Note

The global resource is a non-namespaced resource that could be used by any
(even namespaced) Krake resource. For example, the global infrastructure
provider resource could be used by any cloud which needs to be managed
by the infrastructure provider.

	register

	Add a new GlobalInfrastructureProvider to the ones registered on Krake. Example:

rok infra gprovider register <provider_name> \
 --type <provider_type> \
 --url <provider_api_url> \
 --username <provider_api_username> \
 --password <provider_api_password>

	name:

	The name of the new GlobalInfrastructureProvider, as stored by Krake (can be arbitrary).
The same name cannot be used twice.

	--type:

	The GlobalInfrastructureProvider type. Type of the infrastructure provider that will be registered
on Krake. Currently, only IM [https://github.com/grycap/im] infrastructure provider is supported, and valid type is: im.

	--url:

	The GlobalInfrastructureProvider API url. Valid together with –type im.

	--username (optional):

	The GlobalInfrastructureProvider API username. Valid together with –type im.

	--password (optional):

	The GlobalInfrastructureProvider API password. Valid together with –type im.

	--token (optional):

	The GlobalInfrastructureProvider API token. Valid together with –type im.

	list

	List all GlobalInfrastructureProviders.

	get

	Request information about a specific GlobalInfrastructureProvider.

	name:

	The name of the GlobalInfrastructureProvider to fetch.

	update

	Request a change of the current state of an existing GlobalInfrastructureProvider.

	name:

	The name of the GlobalInfrastructureProvider to update.

	--url (optional):

	The GlobalInfrastructureProvider API url to update. Valid together with –type im.

	--username (optional):

	The GlobalInfrastructureProvider API username to update. Valid together with –type im.

	--password (optional):

	The GlobalInfrastructureProvider API password to update. Valid together with –type im.

	--token (optional):

	The GlobalInfrastructureProvider API token to update. Valid together with –type im.

	delete

	Request the deletion of a specific GlobalInfrastructureProvider.

	name:

	The name of the GlobalInfrastructureProvider to delete.

The InfrastructureProvider resource: infrastructureprovider

This resource manages Krake InfrastructureProvider namespaced resources, which needs
to be registered on Krake to be used. It corresponds to an infrastructure provider software,
that is able to deploy infrastructures (e.g. Virtual machines, Kubernetes clusters)
on IaaS Cloud deployments.

Krake currently supports the following InfrastructureProvider software (types):

	IM [https://github.com/grycap/im] (Infrastructure Manager) tool developed by the GRyCAP research group

Base command: rok infra infrastructureprovider <...>

Available aliases:

	rok infra provider <...>

	rok infra ip <...>

Note

This resource is a namespaced resource that could be used by the
Krake resources from the same namespace. For example, the infrastructure
provider resource could be used by any cloud which lives in the same
namespace as the infrastructure provider.

	register

	Add a new InfrastructureProvider to the ones registered on Krake. Example:

rok infra provider register <provider_name> \
 --type <provider_type> \
 --url <provider_api_url> \
 --username <provider_api_username> \
 --password <provider_api_password>

	name:

	The name of the new InfrastructureProvider, as stored by Krake (can be arbitrary).
The same name cannot be used twice in the same namespace.

	-n | --namespace (optional):

	The namespace to which the InfrastructureProvider have to be added. If none is given, the
user namespace is selected.

	--type:

	The InfrastructureProvider type. Type of the infrastructure provider that will be registered
on Krake. Currently, only IM [https://github.com/grycap/im] infrastructure provider is supported, and valid type is: im.

	--url:

	The InfrastructureProvider API url. Valid together with –type im.

	--username (optional):

	The InfrastructureProvider API username. Valid together with –type im.

	--password (optional):

	The InfrastructureProvider API password. Valid together with –type im.

	--token (optional):

	The InfrastructureProvider API token. Valid together with –type im.

	list

	List all InfrastructureProviders of a namespace.

	-n | --namespace (optional):

	The namespace from which the InfrastructureProvider have to be listed. If none is given, the
user namespace is selected.

	get

	Request information about a specific InfrastructureProvider.

	name:

	The name of the InfrastructureProvider to fetch.

	-n | --namespace (optional):

	The namespace from which the InfrastructureProvider have to be retrieved. If none is given, the
user namespace is selected.

	update

	Request a change of the current state of an existing InfrastructureProvider.

	name:

	The name of the InfrastructureProvider to update.

	-n | --namespace (optional):

	The namespace from which the InfrastructureProvider have to be taken. If none is given, the
user namespace is selected.

	--url (optional):

	The InfrastructureProvider API url to update. Valid together with –type im.

	--username (optional):

	The InfrastructureProvider API username to update. Valid together with –type im.

	--password (optional):

	The InfrastructureProvider API password to update. Valid together with –type im.

	--token (optional):

	The InfrastructureProvider API token to update. Valid together with –type im.

	delete

	Request the deletion of a specific InfrastructureProvider from a namespace.

	name:

	The name of the InfrastructureProvider to delete.

	-n | --namespace (optional):

	The namespace from which the InfrastructureProvider have to be deleted. If none is given, the user namespace is selected.

The GlobalCloud resource: globalcloud

This resource manages Krake GlobalCloud non-namespaced resources,
which needs to be registered on Krake to be used. It corresponds to
an IaaS Cloud deployments (e.g. OpenStack, AWS, etc.) that will be managed
by the infrastructure provider software. GlobalCloud resource could contain
also metrics and labels, that could be used in cluster scheduling.

Krake currently supports the following GlobalCloud cloud software (types):

	OpenStack [https://www.openstack.org/]

Base command: rok infra globalcloud <...>

Available aliases:

	rok infra gcloud <...>

	rok infra gc <...>

Note

The global resource is a non-namespaced resource that could be used by any
(even namespaced) Krake resource. For example, the global cloud resource
could be used by any cluster which needs to be scheduled to some cloud.

	register

	Add a new GlobalCloud to the ones registered on Krake. Example:

rok infra gcloud register <cloud_name> \
 --type <cloud_type> \
 --url <cloud_identity_service_url> \
 --username <cloud_username> \
 --password <cloud_password> \
 --project <cloud_project_name> \
 --global-infra-provider <global_infra_provider_name>

	name:

	The name of the new GlobalCloud, as stored by Krake (can be arbitrary).
The same name cannot be used twice.

	--type:

	The GlobalCloud type. Type of the cloud that will be registered
on Krake. Currently, only OpenStack [https://www.openstack.org/] cloud software is supported, and valid type is: openstack.

	--url:

	URL to OpenStack identity service (Keystone). Valid together with –type openstack.

	--username:

	Username or UUID of OpenStack user. Valid together with –type openstack.

	--password:

	Password of OpenStack user. Valid together with –type openstack.

	--project:

	Name or UUID of the OpenStack project. Valid together with –type openstack.

	--global-infra-provider:

	Global infrastructure provider name for cloud management. Valid together with –type openstack.

	--domain-name (optional):

	Domain name of the OpenStack user. Valid together with –type openstack.

	--domain-id (optional):

	Domain ID of the OpenStack project. Valid together with –type openstack.

	--global-metric (optional):

	The name and weight of a global cloud metric in form: <name> <weight>. Can be
specified multiple times.

	-l | --label (optional):

	The key and the value of cloud label in form: <key>=<value>. Can be
specified multiple times.

	list

	List all GlobalClouds.

	get

	Request information about a specific GlobalCloud.

	name:

	The name of the GlobalCloud to fetch.

	update

	Request a change of the current state of an existing GlobalCloud.

	name:

	The name of the GlobalCloud to update.

	--url (optional):

	URL to OpenStack identity service (Keystone) to update. Valid together with –type openstack.

	--username (optional):

	Username or UUID of OpenStack user to update. Valid together with –type openstack.

	--password (optional):

	Password of OpenStack user to update. Valid together with –type openstack.

	--project (optional):

	Name or UUID of the OpenStack project to update. Valid together with –type openstack.

	--global-infra-provider (optional):

	Global infrastructure provider name for cloud management to update. Valid together with –type openstack.

	--domain-name (optional):

	Domain name of the OpenStack user to update. Valid together with –type openstack.

	--domain-id (optional):

	Domain ID of the OpenStack project to update. Valid together with –type openstack.

	--global-metric (optional):

	The name and weight of cloud global metric in form: <name> <weight>. Can be
specified multiple times.

	-l | --label (optional):

	The key and the value of cloud label in form: <key>=<value>. Can be
specified multiple times.

	delete

	Request the deletion of a specific GlobalCloud.

	name:

	The name of the GlobalCloud to delete.

The Cloud resource: cloud

This resource manages Krake Cloud namespaced resources,
which needs to be registered on Krake to be used. It corresponds to
an IaaS Cloud deployments (e.g. OpenStack, AWS, etc.) that will be managed
by the infrastructure provider software. Cloud resource could contain
also metrics and labels, that could be used in cluster scheduling.

Krake currently supports the following GlobalCloud cloud software (types):

	OpenStack [https://www.openstack.org/]

Base command: rok infra cloud <...>

Note

This resource is a namespaced resource that could be used by the
Krake resources from the same namespace. For example, the cloud resource
could be used by any cluster which lives in the same namespace as the
cloud.

	register

	Add a new Cloud to the ones registered on Krake. Example:

rok infra cloud register <cloud_name> \
 --type <cloud_type> \
 --url <cloud_identity_service_url> \
 --username <cloud_username> \
 --password <cloud_password> \
 --project <cloud_project_name> \
 --infra-provider <infra_provider_name>

	name:

	The name of the new Cloud, as stored by Krake (can be arbitrary).
The same name cannot be used twice in the same namespace.

	-n | --namespace (optional):

	The namespace to which the Cloud have to be added. If none is given, the
user namespace is selected.

	--type:

	The Cloud type. Type of the cloud that will be registered
on Krake. Currently, only OpenStack [https://www.openstack.org/] cloud software is supported, and valid type is: openstack.

	--url:

	URL to OpenStack identity service (Keystone). Valid together with –type openstack.

	--username:

	Username or UUID of OpenStack user. Valid together with –type openstack.

	--password:

	Password of OpenStack user. Valid together with –type openstack.

	--project:

	Name or UUID of the OpenStack project. Valid together with –type openstack.

	--infra-provider (optional):

	Infrastructure provider name for cloud management. Valid together with –type openstack.

	--global-infra-provider (optional):

	Global infrastructure provider name for cloud management to update. Valid together with –type openstack.

	--domain-name (optional):

	Domain name of the OpenStack user. Valid together with –type openstack.

	--domain-id (optional):

	Domain ID of the OpenStack project. Valid together with –type openstack.

	--global-metric (optional):

	The name and weight of cloud global metric in form: <name> <weight>. Can be
specified multiple times.

	-m | --metric (optional):

	The name and weight of cloud metric in form: <name> <weight>. Can be
specified multiple times.

	-l | --label (optional):

	The key and the value of cloud label in form: <key>=<value>. Can be
specified multiple times.

	list

	List all Clouds of a namespace.

	-n | --namespace (optional):

	The namespace from which the Cloud have to be listed. If none is given, the
user namespace is selected.

	get

	Request information about a specific Cloud.

	name:

	The name of the Cloud to fetch.

	-n | --namespace (optional):

	The namespace from which the Cloud have to be retrieved. If none is given, the
user namespace is selected.

	update

	Request a change of the current state of an existing Cloud.

	name:

	The name of the Cloud to update.

	-n | --namespace (optional):

	The namespace from which the Cloud have to be taken. If none is given, the
user namespace is selected.

	--url (optional):

	URL to OpenStack identity service (Keystone) to update. Valid together with –type openstack.

	--username (optional):

	Username or UUID of OpenStack user to update. Valid together with –type openstack.

	--password (optional):

	Password of OpenStack user to update. Valid together with –type openstack.

	--project (optional):

	Name or UUID of the OpenStack project to update. Valid together with –type openstack.

	--infra-provider (optional):

	Infrastructure provider name for cloud management to update. Valid together with –type openstack.

	--global-infra-provider (optional):

	Global infrastructure provider name for cloud management to update. Valid together with –type openstack.

	--domain-name (optional):

	Domain name of the OpenStack user to update. Valid together with –type openstack.

	--domain-id (optional):

	Domain ID of the OpenStack project to update. Valid together with –type openstack.

	--global-metric (optional):

	The name and weight of cloud global metric in form: <name> <weight>. Can be
specified multiple times.

	-m | --metric (optional):

	The name and weight of cloud metric in form: <name> <weight>. Can be
specified multiple times.

	-l | --label (optional):

	The key and the value of cloud label in form: <key>=<value>. Can be
specified multiple times.

	delete

	Request the deletion of a specific Cloud from a namespace.

	name:

	The name of the Cloud to delete.

	-n | --namespace (optional):

	The namespace from which the Cloud have to be deleted. If none is given, the user namespace is selected.

Common options

These options are common to all commands:

	-o | --output <format> (optional):

	The format of the displayed response. Three are available: YAML: yaml, JSON: json or table: table.

Warnings

Warning messages are issued in situations where it is useful to alert the user of some
condition in a Krake, which may exhibit errors or unexpected behavior.
Warnings [https://docs.python.org/3/library/warnings.html] standard library is used, hence the warning messages could be filtered
by PYTHONWARNINGS environment variable.

An example to disable all warnings:

$ PYTHONWARNINGS=ignore rok kube app create <...>

Configuration

This sections describes the configuration of Krake components and Rok. The
different parameters, their value and role will be described here

Note

If an example value is specified for a parameter, it means this parameter
has no default value in Krake.

Configuration file or command-line options

There are two different ways to configure Krake components:

	using the configuration files (also for Rok);

	using command-line options (only for Krake components).

Configuration files

There are 7 different configuration files:

	api.yaml for the Krake API;

	scheduler.yaml for the Scheduler as controller;

	kubernetes_application.yaml for the Kubernetes Application controller;

	kubernetes_cluster.yaml for the Kubernetes Cluster controller;

	garbage_collection.yaml for the Garbage Collector as controller;

	infrastructure.yaml for the Infrastructure controller;

	rok.yaml for the Rok utility.

For each one of them except rok.yaml, a template is present in the
config directory. They end with the .template extension. For Rok, the
template configuration file is in the main directory of Krake.

Generate configuration

From the templates, actual configuration files can be generated using the
krake_generate_config script. The templates have parameters that can be
overwritten by the script. It allows setting some parameters using
command-line options. The arguments and available options are:

	<src_files> <src_files> ...<src_files> (list of file paths)

	Positional arguments: the list of template files that will be used for
generation.

	--dst (path to a directory)

	Optional argument: the directory in which the generated files will be
created. Default: . (current directory).

	--tls-enabled

	If used, set the TLS support to enabled between all Krake components. By
default, TLS is disabled.

	--cert-dir <cert_dir> (path to a directory)

	Set the directory in which the certificates for the TLS communication
should be stored. Default: "tmp/pki".

	--allow-anonymous

	If enabled, anonymous requests are accepted by the API. See
Authentication. Disabled by default for the generation.

	--keystone-authentication-enabled

	Enable the Keystone authentication as one of the authentication mechanisms. See
Authentication. Disabled by default for the generation.

	--keystone-authentication-endpoint

	Endpoint to connect to the keystone service. See
Authentication. Default: "http://localhost:5000/v3".

	--keycloak-authentication-enabled

	Enable the Keycloak authentication as one of the authentication mechanisms. See
Authentication. Disabled by default for the generation.

	--keycloak-authentication-endpoint

	Endpoint to connect to the Keycloak service. See
Authentication. Default: "http://localhost:9080".

	--keycloak-authentication-realm

	Keycloak realm to use on the provided endpoint. See
Authentication. Default: krake.

	--static-authentication-enabled

	Enable the static authentication as one of the authentication mechanisms. See
Authentication. Disabled by default.

	--static-authentication-username

	Name of the user that will authenticate through static authentication. See
Authentication. Default: "system:admin".

	--cors-origin

	URL or wildcard for the ‘Access-Control-Allow-Origin’ of the CORS system on the API.
Default: *.

	--authorization-mode

	Authorization mode to use for the requests sent to the API.
Only ‘RBAC’ should be used in production. See Authorization.
Default: always-allow.

	--api-host <api_host> (Address)

	Host that will be used to create the endpoint of the API for the
controllers. Default: "localhost".

	--api-port <api_port> (integer)

	Port that will be used to create the endpoint of the API for the
controllers.. Default: 8080.

	--etcd-version <etcd_version> (string)

	The etcd database version. Default: v3.3.13.

	--etcd-host <etcd_host> (Address)

	Host for the API to use to connect to the etcd database. Default:
127.0.0.1.

	--etcd-port <etcd_port> (integer)

	Port for the API to use to connect to the etcd database. Default: 2379.

	--etcd-port <etcd_port> (integer)

	Peer port for the etcd endpoint. Default: 2380.

	--docs-problem-base-url <docs_problem_base_url> (string)

	URL of the problem documentation. Default: https://rak-n-rok.readthedocs.io/projects/krake/en/latest/user/problem.

	--docker-daemon-mtu <docker_daemon_mtu> (integer)

	The Docker daemon MTU. Default: 1450.

	--worker-count <worker_count> (integer)

	Number of worker to start on the controller. Workers are the units that
handle resources. Default: 5.

	--debounce <debounce> (float)

	For the controllers: the worker queue has a mechanism to delay a received
state of a resource with a timer. A newer state received will then restart
the timer. If a resource is updated a few times in one second, this
mechanism prevents having to handle it each time by another component, and
wait for the latest value. Default: 1.0.

	--reschedule-after

	Time in seconds after which a resource will be rescheduled. See
Scheduling. Default: 60.

	--stickiness

	“Stickiness” weight to express migration overhead in the normalized ranking
computation. See Scheduling. Default: 0.1.

	--poll-interval

	Time in seconds for the Infrastructure Controller
to ask the infrastructure provider client again after a modification of
a cluster. Default: 30.

	--complete-hook-user

	For the complete hook, set the name of the user that will be defined as CN of the
generated certificates. See Complete.
Default: "system:complete-hook".

	--complete-hook-cert-dest

	For the complete hook, set the path to the mounted directory, in which the
certificates to communicate with the API will be stored. See
Complete. Default: "/etc/krake_cert".

	--complete-hook-env-token

	For the complete hook, set the name of the environment variable that contain the
value of the token, which will be given to the Application. See
Complete. Default: "KRAKE_COMPLETE_TOKEN".

	--complete-hook-env-url

	For the complete hook, set the name of the environment variable that contain the
URL of the Krake API, which will be given to the Application. See
Complete. Default: "KRAKE_COMPLETE_URL".

	--external-endpoint (str)

	If set, replaces the value of the URL host and port of the endpoint given to the
Applications which have the ‘complete’ hook enabled. See Complete.

	--logging-level (str)

	To set the logging level of a controller.
Default: INFO.

	--logging-handler (str)

	To set the handler to use for logging. This lets one choose whether the
logging messages should be printed to stdout or saved to a file.
Options are ‘console’ and ‘file’.
Default: console.

	-h, --help

	Display the help message and exit the script.

Examples

To create default configuration files for Krake, the following command can be
used in the main directory:

krake_generate_config config/*template

This will create all Krake configuration files in the main directory of Krake.

To create default configuration files for Rok, the following command can be
used in the main directory:

krake_generate_config rok.yaml.template

This will create the Rok configuration file in the main directory of Krake.

The two previous commands can be combined together to generate both Rok and
Krake configuration files at the same time:

krake_generate_config config/*template rok.yaml.template

This will create Krake and Rok configuration files in the main directory of
Krake.

To create a new configuration for the API on the tmp directory with a
different etcd database endpoint, the following can be used:

krake_generate_config --dst /tmp config/api.yaml.template --etcd-host newhost.org --etcd-port 1234

Command-line options

Apart from the configuration files, specific command-line options are
available for the Krake components. They are created automatically from the
configuration parameters. Nested options are generated by concatenating the
names of section with dashes characters ("-"). For example, the
authentication.allow_anonymous YAML element becomes the
--authentication-allow-anonymous option.

There is one option for each parameter of the configuration, except the
elements that are lists for the moment. Booleans are converted into optional
flags.

Krake configuration

All configuration options for the Krake API are described here.

	port (integer)

	This parameter defines the port to which the Krake API will listen to for incoming
requests.

	etcd

	This section defines the parameters to let the API communicate with the ETCD database.

	host (string)

	Address of the database. Example: 127.0.0.1

	port (integer), default: 2379

	Port to communicate with the database.

	retry_transactions (int):

	Number of times a database transaction will be attempted again if it failed the
first time due to concurrent write on the same resource.

	tls

	This section defines the parameters needed for TLS support. If TLS is enabled, all other components and clients need TLS support to communicate with the API.

	enabled (boolean)

	Activate or deactivate the TLS support. Example: false

	cert (path)

	Set the path to the client certificate authority. Example: tmp/pki/system:api-server.pem

	key (path)

	Set the path to the client certificate. Example: tmp/pki/system:api-server-key.pem

	client_ca (path)

	Set the path to the client key. Example: tmp/pki/ca.pem

Authentication and authorization

	authentication

	This section defines the method for authenticating users that connect to the API.
Three methods are available: keystone, keycloak and static. A user not recognized
can still send request if anonymous are allowed.

	allow_anonymous (boolean), default: false

	Enable the “anonymous” user. Any request executed without a user being authenticated will be processed as user system:anonymous.

	strategy

	This section describes the parameters for the methods of authentication.

	keystone

	The Keystone service of OpenStack can be used as authentication method.

	enabled (boolean)

	Set Keystone as authentication method. Example: false

	endpoint (URL)

	Endpoint of the Keystone service. Example: http://localhost:5000/v3

	keycloak

	The Keycloak service can be used as authentication method.

	enabled (boolean)

	Set Keycloak as authentication method. Example: false

	endpoint (URL)

	Endpoint of the Keycloak service. Example: http://localhost:9080

	realm (str)

	Keycloak realm to use at the provided endpoint. Example: krake

	static

	The user is set here, and the API will authenticate all requests as being sent by this user.

	enabled (boolean)

	Set the static method as authentication method. Example: true

	name (string)

	This is the name of the user that will be set as sending all requests. Example: system

	cors-origin (string), default *

	For the CORS mechanism of Krake. Set the default allowed URL, which corresponds
to the Access-Control-Allow-Origin response header.

	authorization (enumeration)

	This parameter defines the mode for allowing users to perform specific actions (e.g. “create” or “delete” a resource). Three modes are available: RBAC, always-allow, always-deny.

Controllers configuration

The general configuration is the same for each controller. Additional parameters can be added for specific controllers, depending on the implementation. Here are the common parameters:

	api_endpoint (URL)

	Address of the API to be reached by the current controller. Example: http://localhost:8080

	debounce (float)

	For the worker queue of the controller: set the debounce time
to delay the handling of a resource, and get any updated state
in-between. Example 1.5

	tls

	This section defines the parameters needed for TLS support. If TLS support is enabled on the API, it needs to be enabled on the controllers to let them communicate with the API.

	enabled (boolean)

	Activate or deactivate the TLS support. If the API uses only TLS, then this should be set to true. This has priority over the scheme given by api_endpoint. Example: false

	client_ca (path)

	Set the path to the client certificate authority. Example: ./tmp/pki/ca.pem

	client_cert (path)

	Set the path to the client certificate. Example: ./tmp/pki/jc.pem

	client_key (path)

	Set the path to the client key. Example: ./tmp/pki/jc-key.pem

Kubernetes application controller

Additional parameters, specific for the Kubernetes application controller:

	hooks (string)

	All the parameters for the application hooks are described here. See also
Complete.

	complete (string)

	This section defines the parameters needed for the Application complete hook. If is not defined the Application complete hook is disabled.

	hook_user (string)

	Name of the user that will be set as CN in the certificates generated for
the hook. If RBAC is enabled, should match a RoleBinding for the
applications/complete subresource. Example system:complete-hook

	intermediate_src (path)

	Path to the certificate which will be used to sign new generated
certificates for the hook. Not needed if TLS is not enabled. Example:
/etc/krake/certs/system:complete-signing.pem

	intermediate_key_src (path)

	Path to the key of the certificate which will be used to sign new generated
certificates for the hook. Not needed if TLS is not enabled. Example:
/etc/krake/certs/system:complete-signing-key.pem

	cert_dest (path)

	Set the path to the certificate authority on the deployed Application. Example: /etc/krake_cert

	env_token (string)

	Name of the environment variable, which stores Krake authentication token. Example: KRAKE_COMPLETE_TOKEN

	env_url (string)

	Name of the environment variable, which stores Krake complete hook URL. Example: KRAKE_COMPLETE_URL

	external_endpoint (URL, optional)

	If set, replaces the host and port in the value of environment variable in
the Krake complete hook URL (the name of this variable is given by
env_url_). By default, the value stored in the variable is the
api_endpoint. Example: https://krake.external.host:1234.

	shutdown (string)

	This section defines the parameters needed for the Application shutdown hook. If is not defined the Application shutdown hook is disabled.

	hook_user (string)

	Name of the user that will be set as CN in the certificates generated for
the hook. If RBAC is enabled, should match a RoleBinding for the
applications/shutdown subresource. Example system:shutdown-hook

	intermediate_src (path)

	Path to the certificate which will be used to sign new generated
certificates for the hook. Not needed if TLS is not enabled. Example:
/etc/krake/certs/system:shutdown-signing.pem

	intermediate_key_src (path)

	Path to the key of the certificate which will be used to sign new generated
certificates for the hook. Not needed if TLS is not enabled. Example:
/etc/krake/certs/system:shutdown-signing-key.pem

	cert_dest (path)

	Set the path to the certificate authority on the deployed Application. Example: /etc/krake_cert

	env_token (string)

	Name of the environment variable, which stores Krake authentication token. Example: KRAKE_SHUTDOWN_TOKEN

	env_url (string)

	Name of the environment variable, which stores Krake shutdown hook URL. Example: KRAKE_SHUTDOWN_URL

	external_endpoint (URL, optional)

	If set, replaces the host and port in the value of environment variable in
the Krake shutdown hook URL (the name of this variable is given by
env_url_). By default, the value stored in the variable is the
api_endpoint. Example: https://krake.external.host:1234.

Scheduler

Additional parameters, specific for the Scheduler:

	reschedule_after (float):

	Number of seconds between the last update or rescheduling of a resource and the
next rescheduling. Example: 60

	stickiness (float):

	Additional weight for the computation of the rank of the scheduler. It is added to
the computation of the rank of the cluster on which a scheduled resource is
actually running. It prevents migration from happening too frequently, and thus,
represents the cost of migration. As the computation is done with normalized
weights, the stickiness is advised to be between 0 and 1. Example: 0.1.

Infrastructure controller

Additional parameters, specific for the Infrastructure controller:

	poll_interval (float):

	Time in seconds for the Infrastructure Controller to ask the infrastructure
provider client again after a modification of a cluster. Example: 30.

Common configuration:

The following elements are common for all components of Krake except Rok.

Logging

	log:

	This section is dedicated to the logging of the application. The syntax follows the one described for the Python logging [https://docs.python.org/2/library/logging.config.html] module (logging.config). The content of this section will be given to this module for configuration.

Rok configuration

	api_url (URL)

	Address of the Krake API to connect to. If the scheme given is incompatible with the tls.enabled parameter, it will be overwritten to match. Example: http://localhost:8080

	user (string)

	The name of the user that will access the resources. Example: john-doe

	tls

	This section defines the parameters needed for TLS support, which can be used to communicate with the API.

	enabled (boolean)

	Activate or deactivate the TLS support. If the API uses only TLS, then this should be set to true. This has priority over the scheme given by api_url. Example: false

	client_ca (path)

	Set the path to the client certificate authority. Example: ./tmp/pki/ca.pem

	client_cert (path)

	Set the path to the client certificate. Example: ./tmp/pki/jc.pem

	client_key (path)

	Set the path to the client key. Example: ./tmp/pki/jc-key.pem

Custom Observer Schema

Purpose

When a user creates Kubernetes resources on a Kubernetes cluster via Krake, those
resources are managed by Krake and should be “observed”. That’s the role of the
Kubernetes Observer (see the dev/observers:Observers documentation). But what
parts of the Kubernetes resources should be “observed” by Krake? The purpose of the
Observer Schema is to provide a flexible mean for the Krake users to define which fields
of the Kubernetes resources should be “observed” and which shouldn’t.

When a field is “observed”, every change to the value of this field made outside of
Krake is reverted to the last known state of this field. When a field is not “observed”,
Krake doesn’t act on external changes made to this field. This is needed to keep a
consistent and predictable application state, especially since changes could also be
done in the Kubernetes infrastructure or by the Kubernetes plane itself.

Note

The custom observer schema could be used even when the application is described by a TOSCA template or CSAR archive.
Both file types are translated to Kubernetes manifests in Krake’s Kubernetes application controller,
hence the custom observer schema file will be applied to the Kubernetes resources just like it happens during a “regular”
workflow, when a Kubernetes manifest is used, see dev/tosca:TOSCA Workflow.

Note

As Kubernetes manages some fields of a Kubernetes resource (for instance the
ResourceVersion), simply observing the entirety of a Kubernetes resource is not
possible. This would lead to infinite reconciliation loops between
Krake and Kubernetes, which is not a desirable state.

Format

Example

This basic example will be re-used at different part of this documentation.

Example of manifest file provided by the user:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: echo-demo
 namespace: secondary
spec:
 selector:
 matchLabels:
 app: echo
 template:
 metadata:
 labels:
 app: echo
 spec:
 containers:
 - name: echo
 image: k8s.gcr.io/echoserver:1.10
 ports:
 - containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 name: echo-demo
 namespace: secondary
spec:
 type: NodePort
 selector:
 app: echo
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080

Example of custom observer schema provided by the user.

apiVersion: v1
kind: Service
metadata:
 name: echo-demo
 namespace: default
spec:
 selector:
 app: null
 ports:
 - port: null
 protocol: null
 targetPort: null
 - port: null
 protocol: null
 targetPort: null
 - observer_schema_list_min_length: 1
 observer_schema_list_max_length: 4
 sessionAffinity: null

Default observer schema

By default, all fields defined in spec.manifest are observed. All other fields are
not observed. By defining a custom observer schema, the user is able to overwrite the
default behavior and precisely define the observed fields.

In the example above, the user didn’t specify a custom observer schema file for the
Deployment resource. Therefore Krake will generate a default observer schema, and
observe only the fields which are specified in the manifest file.

The result default observer schema for the Deployment resource is:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: echo-demo
 namespace: secondary
spec:
 selector:
 matchLabels:
 app: null
 template:
 metadata:
 labels:
 app: null
 spec:
 containers:
 - name: null
 image: null
 ports:
 - containerPort: null
 - observer_schema_list_min_length: 1
 observer_schema_list_max_length: 1
 - observer_schema_list_min_length: 1
 observer_schema_list_max_length: 1

Resource identification

In order to identify which resource a schema is referring to, the apiVersion,
kind and name need to be specified. Those fields are also the minimum fields a
user can specify in order to observe a resource. As a result, and without additional
fields to observe, the Kubernetes Observer will simply check the presence of a
Kubernetes resource with this apiVersion, kind and name.

Example of a minimal observer schema for the Service resource:

apiVersion: v1
kind: Service
metadata:
 name: echo-demo

Note

The Kubernetes namespace key metadata.namespace is not mandatory, as it is not
used in the identification of a resource in Krake. Indeed, its value is not always
known at the creation of the application. It can depend from the Kubernetes cluster
the application is scheduled to.

Please note that not all Kubernetes objects are in a namespace. Most Kubernetes
resources (e.g. pods, services, replication controllers, and others) are in some
namespaces. However, namespace resources are not themselves in a namespace.
And low-level resources, such as nodes and persistentVolumes, are not in any
namespace.

Therefore, Krake (by default) does not observe a Kubernetes namespace field.

Users may choose to add the metadata.namespace key to their custom observer schema,
then the metadata.namespace field will be observed.

Observed fields

A field value will be observed if it is defined in the observer schema. Its value should
be null (in YAML), except for fields used for the resource identification.

In the example above:

	the spec.type of the Service is not observed, as it is not present in the custom
observer schema. Its original value is specified in the manifest file, but Krake
doesn’t guarantee this value to remain.

	the spec.selector.app of the Service is observed as it is present in the
custom observer schema. Krake guarantee that its original value will remain the same, by
observing the value and reverting any changes which were not made through Krake.

	the spec.sessionAffinity of the Service is observed. As it is not present in
the manifest, the Kubernetes API will initialize it. Once it has been initialized by
Kubernetes, Krake guarantee that its value will not be modified outside of Krake.

Warning

A non-observed field cannot be updated by Krake. In order to update such a field,
one also need to observe it (i.e. update the custom observer schema to add this
field).

Note

Except for the fields used for identifying the Kubernetes resource, all fields value
MUST be null. Otherwise, the custom observer schema is invalid.

List length control

A list’s length is controlled though the used of a special control dictionary, added as
the last element of a list. The minimum and maximum length of the list must be
specified.

In the example Service’s custom observer schema, the number of ports must be
between 1 and 4. If the length of the ports list is below 1 or above 4, Krake
reverts the Service to its last known value.

For the first port, the value of port, protocol, targetPort are defined in
the manifest file.

The presence of a second element in the ports list in the custom observer schema
doesn’t guarantee its presence. Krake guarantee that, if a second port is set, its value
won’t be allowed to change outside of Krake. It can be removed and re-added, as long as
its value remains unchanged.

Tip

Krake doesn’t allow to set a minimum list length value below the number of element
specified in the manifest file.

Tip

An unlimited list length can be specified by setting
observer_schema_list_max_length to 0.

Note

A list MUST contain the special control dictionary. Otherwise, the custom observer
schema is invalid.

Usage

A custom observer schema can be specified in rok with the argument -O or
--observer_schema. If none is provided, a default observer schema is generated and
all fields defined in spec.manifest are observed

User Stories

	Introduction

	Demonstration of basic commands and workflow

	Scheduling an Application using Labels and LabelConstraints

	Scheduling an Application Using Metrics

	OpenStack backends

	Creation and deployment of a stateful application

	Infrastructure providers

	Scheduling a Cluster using Labels and LabelConstraints

	Scheduling a Cluster using Metrics

	Horizontal Cluster Scaling

Introduction

This guide

This guide aims at providing an introduction in some concepts and mechanisms of Krake. It provides guidances and commands that readers are encouraged to try out by themselves on a demo environment as described in the next section.

It does not aim at providing an exhaustive list of commands nor all the possible ways how to use them.

This guide is structured into independent Scenarios which usually start with a Preparation section, and end with a Cleanup section.

Demo Environment

Note

The demo environment described in this section refers to a standard development environment deployed with Ansible. See Set up Krake with Ansible

The demo environment is comprised of 3 virtual machines in the same private network:

	The Krake VM: It runs all the Krake components in docker containers, as well as a Prometheus Server to simulate scheduling data for the backends.

	The two Minikube VMs minikube-cluster-1 and minikube-cluster-2: They run an all-in-one Kubernetes “cluster”. They are used as backends by Krake to deploy the users’ applications.

Note

Scenario OpenStack backends additionally requires to have an OpenStack project at hand.

On the Krake VM, the two Kubernetes clusters kubeconfig files are present:

ll clusters/config/
cat clusters/config/minikube-cluster-1
cat clusters/config/minikube-cluster-2

Note

Unless stated otherwise (generally in the prompt), all commands are run on the Krake VM, with the krake user.

A simple manifest file will be used as a demo application. It can be found at the following path:

cat git/krake/rak/functionals/echo-demo.yaml

Demonstration of basic commands and workflow

Goal: Get familiar with basic rok commands, and with the associated internal Krake mechanisms.

Introduction to the rok CLI

	Following commands provide basic help on the rok CLI and its structure:

rok --help
rok kubernetes --help # Similar to "rok kube --help"
rok kube application --help # Similar to "rok app --help"
rok kube cluster --help
rok infrastructure --help # Similar to "rok infra --help"

Register a cluster

	Register a Kubernetes cluster using its associated Kubernetes kubeconfig file.

rok kube cluster list # No Cluster resource is present
rok kube cluster register -k clusters/config/minikube-cluster-1
rok kube cluster list # One Cluster resource with name "minikube-cluster-1"

Note

The command register registers an existing Kubernetes cluster through its
kubeconfig file. Resource called a Cluster (handled by the
kubernetes API of Krake) is created by the register command.
It contains multiple pieces of information, in particular the content
of the kubeconfig file itself. The resource helps to store the information
needed to connect to the actual Kubernetes cluster.

Important

In the following, a Kubernetes cluster refers to an actual cluster, which has
been already installed and prepared. This can be the Minikube clusters deployed by
the Krake test environment.

A Krake Kubernetes Cluster is a resource in the Krake database, which was created
by Krake or registered into Krake and contains the kubeconfig file of the
corresponding Kubernetes cluster.

Tip

Krake is able to actually create a Kubernetes cluster by supported infrastructure providers.
If you are interested in the topic of Kubernetes cluster life-cycle management by Krake
please refer to the Infrastructure providers section.

Spawn the demo application

	Spawn a Kubernetes Application using its Kubernetes manifest file.

rok kube app list # No Application resource is present
rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo
rok kube app list # One Application resource with name "echo-demo"

– Alternatively, spawn a Kubernetes Application using a TOSCA template file (or URL) or CSAR archive URL, see Examples.

rok kube app list # No Application resource is present
rok kube app create -f git/krake/rak/functionals/echo-demo-tosca.yaml echo-demo
rok kube app list # One Application resource with name "echo-demo"

	Check application information:

	Application Status is RUNNING.

	Application is running on minikube-cluster-1.

rok kube app get echo-demo
rok kube app get echo-demo -o json # Use JSON format, which is also more verbose

	Access the demo application endpoint:

APP_URL=$(rok kube app get echo-demo -o json | jq '.status.services["echo-demo"]'); APP_URL="${APP_URL:1: -1}" # Extract Application endpoint from JSON output and register it in the APP_URL variable
curl $APP_URL

	Check the created resources on the Kubernetes cluster:

kubectl --kubeconfig clusters/config/minikube-cluster-1 get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
echo-demo 1/1 1 1 3h34m
kubectl --kubeconfig clusters/config/minikube-cluster-1 get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
echo-demo NodePort 10.98.78.74 <none> 8080:32235/TCP 3h34m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 27h
kubectl --kubeconfig clusters/config/minikube-cluster-1 get po
NAME READY STATUS RESTARTS AGE
echo-demo-6dc5d84869-4hcd8 1/1 Running 0 3h34m

Update resources

	Update the manifest file to create a second Pod for the echo-demo application.

cat git/krake/rak/functionals/echo-demo-update.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: echo-demo
spec:
 replicas: 2
 selector:
 matchLabels:
 app: echo
 template:
 metadata:
 labels:
 app: echo
 spec:
 containers:
 - name: echo
 image: k8s.gcr.io/echoserver:1.9
 ports:
 - containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 name: echo-demo
spec:
 type: NodePort
 selector:
 app: echo
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
rok kube app update -f git/krake/rak/functionals/echo-demo-update.yaml echo-demo

– Alternatively, update a TOSCA template file (or URL) or CSAR archive URL to create a second Pod for the echo-demo application, see Examples.

rok kube app update -f git/krake/rak/functionals/echo-demo-update-tosca.yaml echo-demo

	Check the existing resources on the Kubernetes cluster: A second Pod has been spawned.

kubectl --kubeconfig clusters/config/minikube-cluster-1 get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
echo-demo 2/2 2 2 42m
kubectl --kubeconfig clusters/config/minikube-cluster-1 get po
NAME READY STATUS RESTARTS AGE
echo-demo-6dc5d84869-2v6jh 1/1 Running 0 7s
echo-demo-6dc5d84869-l7fm2 1/1 Running 0 42m

Delete resources

	Issue the following commands to delete the echo-demo Kubernetes Application and the minikube-cluster-1 Kubernetes Cluster.

rok kube app delete echo-demo
rok kube app list # No Application resource is present
rok kube cluster delete minikube-cluster-1
rok kube cluster list # No Cluster resource is present

Scheduling an Application using Labels and LabelConstraints

Goal: Explore the labels mechanisms and schedule an application based on labels and label constraints

Introduction to Scheduling mechanisms

Note

After its initial scheduling, an application location is re-evaluated every 60 seconds by the Scheduler - the so-called “rescheduling”. In the following scenarios, we observe both the initial scheduling of an application, and a migration triggered by the rescheduling. To correctly observe this mechanism, it is recommended to check the Scheduler logs, the Application status, and the resources running on the Kubernetes clusters directly, by running the following commands in separate terminals:

	Watch the echo-demo Kubernetes Application status, and more precisely its current location:

watch "rok kube app get echo-demo -o json | jq .status.running_on"

	Watch Scheduler logs:

docker logs -f krake_krake-ctrl-scheduler_1

	Observe k8s resources on both Minikube clusters:

watch kubectl --kubeconfig clusters/config/minikube-cluster-1 get all

watch kubectl --kubeconfig clusters/config/minikube-cluster-2 get all

Preparation

	Register the two clusters with a location Label.

Note

Each label always have a key and a value. We follow the same specifications as
Kubernetes [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set].

rok kube cluster register -k clusters/config/minikube-cluster-1 -l location=DE
rok kube cluster register -k clusters/config/minikube-cluster-2 -l location=SK

Spawn the demo application

	Create an application with a location LabelConstraints, and observe where it is deployed.

rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo -L location=DE
rok kube app get echo-demo -o json | jq .status.running_on

Observe a migration

	Update an application’s LabelConstraints and observe the migration to the second Kubernetes cluster.

rok kube app update echo-demo -L location=SK
rok kube app get echo-demo -o json | jq .status.running_on # The Application is now running on "minikube-cluster-2"

Cleanup

	Delete the echo-demo Kubernetes Application and both Krake Kubernetes Clusters

rok kube app delete echo-demo
rok kube cluster delete minikube-cluster-1
rok kube cluster delete minikube-cluster-2

Scheduling an Application Using Metrics

Goal: Explore the metrics mechanisms and schedule an application based on cluster metrics.

Note

Refer to the Introduction to Scheduling mechanisms for useful commands to observe the migration mechanism.

Introduction

Metrics in the Krake sense have two meanings. The first one is an actual value for some
parameter, which can be measured or computed in the real world. For instance the current
space available on a data center, its latency, the amount of green energy used by the
data center could all be metrics. This value may be dynamic and change over time.
A GlobalMetric is also a resource in Krake. It represents an actual metric,
is stored in the database, and defines a few elements, such as the minimum and
maximum values (Krake only considers numbers for the metrics).

The Krake scheduler can use these metrics to compute the score of a Krake Kubernetes
Cluster. Each cluster is associated with a list of metrics and their respective
weights for this cluster. This list is defined by the user who added the Cluster
resource into Krake. A higher weight means that the metric has a higher influence in the
score: a metrics with a low value, but a high weight may have more impact on the score
than a metric with medium value but low weight. The Cluster metrics and
the computed score is then used in the Application scheduling process.

For Krake to fetch the current value of a metric, a user needs to define where and how
it can be requested. GlobalMetricsProvider resources can be created for this
purpose. They have different types, to support different technologies. There is for
example a support for Prometheus [https://prometheus.io/]. The GlobalMetricsProvider resource will define
the URL of the Prometheus instance and some other metadata, and afterwards, Krake’s
scheduler can automatically fetch the current value of the metrics for the score’s
computation.

The static providers are simple metric providers usually only set during tests. They
allow a Krake resource to be associated with simple metrics, for which the value can be
fetched easily, without having to set up a whole infrastructure.

The static providers thus give values for GlobalMetric resources. This value is
only defined in the resource (stored in the database). Updating the
GlobalMetricsProvider resource definition thus implies updating the value of
the metrics.

An example of a static GlobalMetricsProvider resource is given in the following.
It is used in the next steps of this guide. As explained, the value of the metrics
it provides are directly set inside its definition:

api: core
kind: GlobalMetricsProvider
metadata:
 created: '2020-01-21T10:50:11.500376'
 deleted: null
 finalizers: []
 labels: {}
 modified: '2020-01-21T10:50:11.500376'
 name: static_provider
 namespace: null
 owners: []
 uid: 26ef45e8-e5c8-44fe-8a7f-a3f40944c925
spec:
 static:
 metrics:
 electricity_cost_1: 0.9 # Set the value that will be provided for this metric
 green_energy_ratio_1: 0.1 # Set the value that will be provided for this metric
 type: static

To get additional information about the metrics and metrics providers, please read the
documentation about them, see Metrics and Metrics Providers.

Preparation

	Add the static_provider metrics provider using the bootstrap script (from the root of the Krake repository):

cd <path_to_krake_root>
krake_bootstrap_db support/static_metrics.yaml

	Check that the GlobalMetricsProvider and GlobalMetrics objects have been successfully added:

rok core globalmetricsprovider get static_provider
+-----------+---------------------------+
name	static_provider
namespace	None
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
type	static
metrics	electricity_cost_1: 0.9
	green_energy_ratio_1: 0.1
+-----------+---------------------------+	
rok core globalmetric get electricity_cost_1	
+-----------+---------------------+	
name	electricity_cost_1
namespace	None
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
provider	static_provider
min	0
max	1
+-----------+---------------------+	
rok core globalmetric get green_energy_ratio_1	
+-----------+----------------------+	
name	green_energy_ratio_1
namespace	None
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
provider	static_provider
min	0
max	1
+-----------+----------------------+

	Register minikube-cluster-1 and minikube-cluster-2 clusters, and associate the electricity_cost_1 and green_energy_ratio_1 metrics to them using different weights to get different ranking scores:

rok kube cluster register -k clusters/config/minikube-cluster-1 --global-metric electricity_cost_1 10 --global-metric green_energy_ratio_1 1
rok kube cluster register -k clusters/config/minikube-cluster-2 --global-metric electricity_cost_1 1 --global-metric green_energy_ratio_1 10

	The clusters minikube-cluster-1/-2 have been defined with the following
weights for the two static metrics:

	
	minikube-cluster-1

	minikube-cluster-2

	Value

	electricity_cost_1

	Weight: 10

	Weight: 1

	0.9

	green_energy_ratio_1

	Weight: 1

	Weight: 10

	0.1

	Score

	9.1

	1.9

	

As the score of minikube-cluster-1 is higher, it will been chosen, and the
Application will be deployed on it. The score is computed like the following:

\[10 \cdot 0.9 + 1 \cdot 0.1 = 9.1\]

Scheduling of an application

	Create the echo-demo application and check it is actually deployed on the first
cluster:

rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo
rok kube app get echo-demo # See "running_on": the Application is running on "minikube-cluster-1"

Note

You can observe the scheduler logs in DEBUG mode to gather additional understanding of the scheduling mechanism.

Observe a migration

	The Scheduler regularly performs a check, to ensure the current cluster on which an
Application is running is the best, depending on its score. This check is done by
default every minute (see the configuration of the
Scheduler). If an available cluster with a better score than
the one of the current cluster is found, the Application is migrated from the current
to the better cluster.

As the score is computed using the metrics, we can trigger the migration by updating
the exported value of the metrics in the static_provider GlobalMetricsProvider
resource. The following command updates the value of the static metrics:

	electricity_cost_1: to have a value of 0.1;

	green_energy_ratio_1: to have a value of 0.9;

	
	minikube-cluster-1

	minikube-cluster-2

	New value

	electricity_cost_1

	Weight: 10

	Weight: 1

	0.1

	green_energy_ratio_1

	Weight: 1

	Weight: 10

	0.9

	Score

	1.9

	9.1

	

Note

This is not the actual score but a simplification, as stickiness is also part of the
computation, see Scheduling of Applications

	Update the value of the metrics, by updating the static_provider GlobalMetricsProvider:

rok core globalmetricsprovider update static_provider --metric electricity_cost_1 0.1 --metric green_energy_ratio_1 0.9
+-----------+---------------------------+
name	static_provider
namespace	None
labels	None
created	2021-04-08 08:04:23
modified	2021-04-08 08:10:34
deleted	None
type	static
metrics	electricity_cost_1: 0.1
	green_energy_ratio_1: 0.9
+-----------+---------------------------+

	Now, by waiting a bit (maximum 60 seconds if you kept the default configuration), the
Scheduler should have checked the new values of the metrics, and have requested a
migration of the Application onto minikube-cluster-2, which has now the better
score:

rok kube app get echo-demo # See "running_on": the Application is running on "minikube-cluster-2"

Cleanup

	Delete the echo-demo Kubernetes Application and both Kubernetes Clusters.

$ rok kube app delete echo-demo
$ rok kube cluster delete minikube-cluster-1
$ rok kube cluster delete minikube-cluster-2

OpenStack backends

Warning

Due to stability and development issues on the side of Magnum, this feature isn’t actively developed anymore.

Goal: Demonstrate the use of an OpenStack project as a backend for Krake

Note

Krake supports different kind of backends. In the previous example, we used a Kubernetes cluster (deployed in a single VM via Minikube). In this scenario, we register an existing OpenStack project.

Register an existing OpenStack project to Krake

	Gather information about your OpenStack project, for example:

openstack coe cluster template list # Get Template ID
openstack project show my_openstack_project # Get Project ID
openstack user show my_user # Get User ID
grep OS_AUTH_URL ~/openrc # Get Keystone auth URL

	Create a OpenStack Project resource in Krake:

rok os project create --template 728f024e-8a88-4971-b79f-151da123f363 --project-id 5bc3bab620bd48b0b9b425ee492050ea --password "password" --user-id 737bbcd2ce264d2fa32fa306ac84e97d --auth-url https://identity.myopenstack.com:5000/v3 myproject

Create a MagnumCluster

rok os cluster list # No Cluster resource is present
rok os cluster create mycluster
rok os cluster list # One Cluster resource with name "mycluster"

Note

The creation of the Magnum cluster can take up to 10 minutes to complete.

	Observe that one Kubernetes Cluster is created in association to the MagnumCluster.

rok kube cluster list

Spawn the demo application

	Create the demo Kubernetes Application and observe the resource status.

rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo
rok kube app get echo-demo # See "running_on"

Cleanup

	Delete the echo-demo Kubernetes Application and the OpenStack Project

rok kube app delete echo-demo
rok kube os cluster delete mycluster
rok kube project delete myproject

Creation and deployment of a stateful application

Goal: Create and deploy a stateful application to Krake.

Note

This feature is still under development in Krake, so new features could
be added or removed in the future. Also, some implementation details might
change.

Therefore, this page is subject to changes until this note is removed.

Infrastructure providers

Goal: Demonstrate the use of an OpenStack based cloud backend for Krake. Krake uses the IM [https://github.com/grycap/im] (Infrastructure Manager) provider as a backend for spawning a Kubernetes cluster. A Kubernetes cluster is then automatically registered in Krake and could be used for the application deployment.

This is an advanced user scenario where the user should register the existing infrastructure provider backend (IM)
as well as an existing IaaS cloud deployment (OpenStack) before the actual cluster creation. The user is navigated to
register those resources to Krake. Please read the brief overview of Krake’s infrastructure provider and cloud
resources below:

Krake resources called GlobalInfrastructureProvider and InfrastructureProvider correspond
to an infrastructure provider backend, that is able to deploy infrastructures (e.g. Virtual machines,
Kubernetes clusters, etc.) on IaaS cloud deployments (e.g. OpenStack, AWS, etc.).
Krake currently supports IM [https://github.com/grycap/im] (Infrastructure Manager) as an infrastructure provider backend.

Krake resources called GlobalCloud and Cloud correspond
to an IaaS cloud deployment (e.g. OpenStack, AWS, etc.) that will be managed
by the infrastructure provider backend. GlobalCloud and Cloud resources
could contain also metrics and labels, that could be used in Cluster scheduling.
Krake currently supports OpenStack [https://www.openstack.org/] as a GlobalCloud or Cloud backend.

Note

The global resource (e.g. GlobalInfrastructureProvider, GlobalCloud) is a
non-namespaced resource that could be used by any (even namespaced) Krake
resource. For example, the GlobalCloud resource could be used by any Cluster
which needs to be scheduled to some cloud.

Note

Note that file paths mentioned in this tutorial are relative to the root of the Krake repository.

Preparation

Launch the IM [https://github.com/grycap/im] infrastructure provider instance using the support script.
Please note that the IM [https://github.com/grycap/im] instance is launched in the docker environment, therefore it is mandatory to install docker [https://docs.docker.com/get-docker/] beforehand.

support/im

Warning

The above support script launches the IM [https://github.com/grycap/im] as is described in the IM quick start [https://imdocs.readthedocs.io/en/latest/gstarted.html] tutorial, hence with the default
configuration and in a non-productive way. Please visit the IM documentation [https://imdocs.readthedocs.io/en/latest/] for further information about how to
configure, launch and interact with the IM [https://github.com/grycap/im] software.

Register an existing infrastructure provider to Krake

IM [https://github.com/grycap/im] service username and password could be arbitrary.
The username and password are used for userspace definition.
It means, that anyone can talk with IM [https://github.com/grycap/im] but can see only their own userspace.

rok infra provider register --type im --url http://localhost:8800 --username test --password test im-provider

Register an existing OpenStack based cloud to Krake

Gather information about your OpenStack project from openrc file:

	Insert the OS_AUTH_URL value (without path) to the --url argument, e.g. https://identity.cloud.com:5000

	Insert the OS_PROJECT_NAME value to the --project argument

	Insert the OS_USERNAME value to the --username argument

	Insert the OS_PASSWORD value to the --password argument

Use the already registered infrastructure provider called im-provider as an infrastructure provider for your OpenStack cloud.

Note

If you want to use the C&H F1A OpenStack cloud, please note that it does not assign public IPs to the VMs. C&H F1A requires a private network for all VMs.
This private network is connected to the public one via a router. The router should be created beforehand as the IM
provider is not able to do this. You can create the requested router in your C&H F1A OpenStack cloud project as follows:

openstack router create --external-gateway shared-public-IPv4 public_router

rok infra cloud register --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud

Create a Cluster

rok kube cluster list # No Cluster resource is present
rok kube cluster create -f rak/functionals/im-cluster.yaml my-cluster
rok kube cluster list # One Cluster resource with name "my-cluster"

The creation of the cluster can take up to 15 minutes to complete. Observe that Kubernetes Cluster is created.

rok kube cluster list

Spawn the demo application

Create the demo Kubernetes Application and observe the resource status.

rok kube app create -f rak/functionals/echo-demo.yaml echo-demo
rok kube app get echo-demo # See "running_on"

Cleanup

Delete the Cluster, the Cloud and the InfrastructureProvider:

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud
rok infra provider delete im-provider

Scheduling a Cluster using Labels and LabelConstraints

Goal: Explore the labels mechanisms and schedule a Cluster based on labels and label constraints.

Introduction

Note

Refer to the Label constraints for useful information about label constraints.

Krake allows the user to define a label constraint and restrict the deployment of
Cluster resources only to cloud backends that match all defined labels.

Preparation

Please go through the Preparation as well as
through the Register an existing infrastructure provider to Krake
and register an infrastructure provider. Validate the infrastructure provider registration as follows:

rok infra provider list
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+
| name | namespace | labels | created | modified | deleted | type | url |
+=============+==============+========+=====================+=====================+=========+======+=======================+
| im-provider | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | im | http://localhost:8800 |
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+

Register os-cloud-1 and os-cloud-2 Clouds, and associate the location Label.
Each label always has a key and a value. We follow the same specifications as the Kubernetes [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set] project.

Note

Refer to the Register an existing OpenStack based cloud to Krake for useful information about Cloud
attributes.

rok infra cloud register -l location=DE --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-1
rok infra cloud register -l location=SK --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-2

Tip

You do not need access to the two OpenStack projects for os-cloud-1 and os-cloud-2 registration.
It is possible to register one OpenStack project two times in Krake with different labels. Do not use
this setup in the production environment!

Scheduling of a Cluster

Create my-cluster cluster with a location LabelConstraints, and observe where it is spawned.

rok kube cluster create -f git/krake/rak/functionals/im-cluster.yaml my-cluster -L location=SK
rok kube cluster get my-cluster -o json | jq .status.running_on # Cluster is running on "os-cloud-2"

Note

You can observe the scheduler logs in DEBUG mode to gather additional understanding of the scheduling mechanism.

Cleanup

Delete the Cluster, both Clouds and the IM InfrastructureProvider.

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud-1
rok infra cloud delete os-cloud-2
rok infra provider delete im-provider

Scheduling a Cluster using Metrics

Goal: Schedule the cluster based on cloud metrics.

Introduction

Note

Refer to the Introduction and
Metrics and Metrics Providers for useful information about metrics.

The Krake scheduler can use metrics to compute the score of a Krake Cloud resource.
Each Cloud is associated with a list of metrics and their respective
weights for this Cloud. This list is defined by the user who added the Cloud
resource into Krake. A higher weight means that the metric has a higher influence in the
score: a metric with a low value, but a high weight may has more impact on the score
than a metric with a medium value but low weight. The Cloud metrics and
the computed score are then used in the Cluster scheduling process.

Note

Note that file paths mentioned in this tutorial are relative to the root of the Krake repository.

Preparation

Add the static_provider metrics provider using the bootstrap script (from the root of the Krake repository):

cd <path_to_krake_root>
krake_bootstrap_db support/static_metrics.yaml

Check that the GlobalMetricsProvider and GlobalMetrics objects have been successfully added:

rok core globalmetricsprovider list
+-----------------+-----------+--------+---------------------+---------------------+---------+---------+
| name | namespace | labels | created | modified | deleted | mp_type |
+=================+===========+========+=====================+=====================+=========+=========+
| static_provider | None | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | static |
+-----------------+-----------+--------+---------------------+---------------------+---------+---------+
rok core globalmetric list
+----------------------+-----------+--------+---------------------+---------------------+---------+-----------------+-----+-----+
| name | namespace | labels | created | modified | deleted | provider | min | max |
+======================+===========+========+=====================+=====================+=========+=================+=====+=====+
| electricity_cost_1 | None | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | static_provider | 0 | 1 |
| green_energy_ratio_1 | None | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | static_provider | 0 | 1 |
+----------------------+-----------+--------+---------------------+---------------------+---------+-----------------+-----+-----+

Please go through the Preparation as well as
through the Register an existing infrastructure provider to Krake
and register an infrastructure provider. Validate the infrastructure provider registration as follows:

rok infra provider list
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+
| name | namespace | labels | created | modified | deleted | type | url |
+=============+==============+========+=====================+=====================+=========+======+=======================+
| im-provider | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | im | http://localhost:8800 |
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+

Register os-cloud-1 and os-cloud-2 Clouds, and associate the electricity_cost_1 and green_energy_ratio_1 metrics to them using different weights to get different ranking scores:

Note

Refer to the Register an existing OpenStack based cloud to Krake for useful information about Cloud
attributes.

rok infra cloud register --global-metric electricity_cost_1 1 --global-metric green_energy_ratio_1 10 --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-1
rok infra cloud register --global-metric electricity_cost_1 10 --global-metric green_energy_ratio_1 1 --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-2

Tip

You do not need access to the two OpenStack projects for os-cloud-1 and os-cloud-2 registration.
It is possible to register one OpenStack project two times in Krake with different metrics. Do not use
this setup in the production environment!

The clouds os-cloud-1/-2 have been defined with the following
weights for the two static metrics:

	
	os-cloud-1

	os-cloud-2

	Value

	electricity_cost_1

	Weight: 1

	Weight: 10

	0.9

	green_energy_ratio_1

	Weight: 10

	Weight: 1

	0.1

	Score

	1.9

	9.1

	

As the score of os-cloud-2 is higher, it will been chosen, and the
Cluster will be spawned on it. The score is computed like the following:

\[10 \cdot 0.9 + 1 \cdot 0.1 = 9.1\]

Scheduling of a Cluster

Create the my-cluster cluster and check it is actually spawned on the second cloud:

rok kube cluster create -f rak/functionals/im-cluster.yaml my-cluster
rok kube cluster get my-cluster -o json | jq .status.running_on # Cluster is running on "os-cloud-2"

Note

You can observe the scheduler logs in DEBUG mode to gather additional understanding of the scheduling mechanism.

Cleanup

Delete the Cluster, both Clouds and the InfrastructureProvider.

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud-1
rok infra cloud delete os-cloud-2
rok infra provider delete im-provider

Horizontal Cluster Scaling

Goal: Scale up and then down (horizontally) the actual Kubernetes cluster using Krake.

This is an advanced user scenario where the user should register an existing infrastructure provider backend (IM)
as well as an existing IaaS cloud deployment (OpenStack) before the actual cluster creation and scaling it horizontally.
Horizontal scaling is the act of adding (or removing) nodes of the same size to the cluster.

Note

Keep in mind that Krake is able to actually create and then scale (update) the Kubernetes cluster by supported
infrastructure providers. Please refer to the Infrastructure Controller and visit related
user stories for more information about how the actual Kubernetes cluster could be managed by Krake.

Note

Note that file paths mentioned in this tutorial are relative to the root of the Krake repository.

Preparation

Please go through the Preparation as well as
through the Register an existing infrastructure provider to Krake
and register an infrastructure provider. Validate the infrastructure provider registration as follows:

rok infra provider list
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+
| name | namespace | labels | created | modified | deleted | type | url |
+=============+==============+========+=====================+=====================+=========+======+=======================+
| im-provider | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | im | http://localhost:8800 |
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+

Please go through the Register an existing OpenStack based cloud to Krake
and register an existing OpenStack cloud to Krake. Validate the cloud registration as follows:

rok infra cloud list
+----------+--------------+--------+---------------------+---------------------+---------+-----------+---------+----------------+--------+
| name | namespace | labels | created | modified | deleted | type | metrics | infra_provider | state |
+==========+==============+========+=====================+=====================+=========+===========+=========+================+========+
| os-cloud | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | openstack | [] | im-provider | ONLINE |
+----------+--------------+--------+---------------------+---------------------+---------+-----------+---------+----------------+--------+

Create the Cluster

Create the my-cluster cluster using the example TOSCA template stored in rak/functionals/im-cluster.yaml.
This TOSCA template should create a Kubernetes cluster with one control plane node and one worker node.

rok kube cluster create -f rak/functionals/im-cluster.yaml my-cluster

The creation of the cluster can take up to 15 minutes to complete. The fully created and configured cluster
should be in the ONLINE state. You should also see that 2 from 2 nodes total are healthy (nodes: 2/2).
Validate them as follows:

rok kube cluster get my-cluster
+-----------------------+---+
name	my-cluster
namespace	system:admin
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
state	ONLINE
reason	None
custom_resources	[]
metrics	[]
failing_metrics	None
label constraints	[]
metric constraints	[]
scheduled_to	{'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'}
scheduled	2000-01-01 08:00:00
running_on	{'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'}
nodes	2/2
nodes_pid_pressure	0/2
nodes_memory_pressure	0/2
nodes_disk_pressure	0/2
+-----------------------+---+

Optionally, you can export the my-cluster kubeconfig file and validate the cluster health and nodes count
directly by the kubectl [https://kubernetes.io/docs/tasks/tools/#kubectl] CLI. You can do this as follows (with the help of jq [https://stedolan.github.io/jq/] command-line JSON processor):

rok kube cluster get my-cluster -o json | jq .spec.kubeconfig > kubeconfig.json

Access the my-cluster cluster:

kubectl --kubeconfig=kubeconfig.json get nodes
NAME STATUS ROLES AGE VERSION
kubeserver.localdomain Ready control-plane,master 10m v1.22.9
vnode-1.localdomain Ready <none> 9m46s v1.22.9

Scale up the Cluster

Scale the created cluster up using the example TOSCA template stored in rak/functionals/im-cluster-scale-up.yaml.
This TOSCA template should add one worker node. Its size (flavor) should be the same as the size of the previously created worker node.

Alternatively, you can adjust the worker node number on your own. In this case, find and adjust the wn_num
variable count in the TOSCA template:

wn_num:
 type: integer
 description: Number of WNs in the cluster
 default: 2
 required: yes

Scale up the cluster:

rok kube cluster update -f rak/functionals/im-cluster-scale-up.yaml my-cluster

The scaling of the cluster can take up to 5 minutes to complete. The fully scaled and configured cluster
should be in the ONLINE state. You should also see that one node has been successfully added i.e.
3 from 3 nodes total are healthy (nodes: 3/3).
Validate them as follows:

rok kube cluster get my-cluster
+-----------------------+---+
name	my-cluster
namespace	system:admin
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
state	ONLINE
reason	None
custom_resources	[]
metrics	[]
failing_metrics	None
label constraints	[]
metric constraints	[]
scheduled_to	{'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'}
scheduled	2000-01-01 08:00:00
running_on	{'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'}
nodes	3/3
nodes_pid_pressure	0/3
nodes_memory_pressure	0/3
nodes_disk_pressure	0/3
+-----------------------+---+

Access the my-cluster cluster again and validate the cluster health and nodes count
directly by the kubectl [https://kubernetes.io/docs/tasks/tools/#kubectl] CLI:

kubectl --kubeconfig=kubeconfig.json get nodes
NAME STATUS ROLES AGE VERSION
kubeserver.localdomain Ready control-plane,master 34m v1.22.9
vnode-1.localdomain Ready <none> 32m v1.22.9
vnode-2.localdomain NotReady <none> 9m8s v1.22.9

Scale down the Cluster

Scale the created cluster down using the example TOSCA template stored in rak/functionals/im-cluster-scale-down.yaml.
This TOSCA template should remove one worker node.

Alternatively, you can adjust the worker node number on your own. In this case, find and adjust the wn_num and
removal_list variables in the TOSCA template:

wn_num:
 type: integer
 description: Number of WNs in the cluster
 default: 1
 required: yes

...

wn:
 type: tosca.nodes.indigo.Compute
 capabilities:
 scalable:
 properties:
 count: { get_input: wn_num }
 removal_list: ['2']

The removal_list variable should be defined and should contain the ID(s) of the VM(s) which should be removed from the cluster.
You can find the VM IDs in the cluster.status.nodes section of the Krake cluster resource as
follows (with the help of jq [https://stedolan.github.io/jq/] command-line JSON processor):

rok kube cluster get my-cluster -o json | jq .status.nodes[].metadata.name
"kubeserver.localdomain"
"vnode-1.localdomain"
"vnode-2.localdomain"

Find the more detailed description about removal_list in the IM documentation [https://imdocs.readthedocs.io/en/latest/REST.html?highlight=removal_list#im-rest-api].

Scale down the cluster:

rok kube cluster update -f rak/functionals/im-cluster-scale-down.yaml my-cluster

The scaling of the cluster can take up to 5 minutes to complete. The fully scaled and configured cluster
should be in the ONLINE state. You should also see that one node has been successfully removed i.e.
2 from 2 nodes total are healthy (nodes: 2/2).
Validate them as follows:

rok kube cluster get my-cluster
+-----------------------+---+
name	my-cluster
namespace	system:admin
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
state	ONLINE
reason	None
custom_resources	[]
metrics	[]
failing_metrics	None
label constraints	[]
metric constraints	[]
scheduled_to	{'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'}
scheduled	2000-01-01 08:00:00
running_on	{'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'}
nodes	2/2
nodes_pid_pressure	0/2
nodes_memory_pressure	0/2
nodes_disk_pressure	0/2
+-----------------------+---+

Access the my-cluster cluster again and validate the cluster health and nodes count
directly by the kubectl [https://kubernetes.io/docs/tasks/tools/#kubectl] CLI:

kubectl --kubeconfig=kubeconfig.json get nodes
NAME STATUS ROLES AGE VERSION
kubeserver.localdomain Ready control-plane,master 40m v1.22.9
vnode-1.localdomain Ready <none> 38m v1.22.9

Cleanup

Delete the Cluster, Cloud and the InfrastructureProvider.

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud
rok infra provider delete im-provider

HTTP Problem documentation

The failure reason of the Krake API HTTP layer is stored as an RFC7807 [https://tools.ietf.org/html/rfc7807] Problem.
It is a way to define uniform, machine-readable details of errors in an HTTP response.

In case of a failure on the Krake API HTTP layer, the Krake API responds with a well-formatted RFC7807 [https://tools.ietf.org/html/rfc7807] Problem
message, which could contain the following fields:

	type

	A URI reference that identifies the problem type. It should point the Krake API users to the
concrete part of the Krake documentation where the problem type is explained in detail.
Defaults to about:blank.

	title

	A short, human-readable summary of the problem type

	status

	The HTTP status code

	detail

	A human-readable explanation of the problem

	instance

	A URI reference that identifies the specific occurrence of the problem

When RFC7807 [https://tools.ietf.org/html/rfc7807] Problem type is defined, it points Krake API clients to the below
list of better-described HTTP problems.

Note

The RFC7807 [https://tools.ietf.org/html/rfc7807] Problem type URI is generated based
on --docs-problem-base-url API configuration parameter (see Krake configuration)
and the value from the list of defined HTTP Problems, see krake.api.helpers.HttpProblemTitle.

not-found-error

A requested resource cannot be found in the database.

transaction-error

A database transaction failed.

update-error

A update of resource field.

invalid-keystone-token

An authentication attempt with a keystone token failed.

invalid-keycloak-token

An authentication attempt with a keycloak token failed.

resource-already-exists

A resource already defined in the database is requested to be created.

Administrator Documentation

This chapter presents the installation of Krake using Ansible.

	Set up Krake with Ansible

	Variables

	Inventory

	Bootstrapping

	Security principles

Set up Krake with Ansible

This sections describes prerequisites and deployment of a Krake infrastructure with Ansible [https://www.ansible.com/].

Prerequisites

	Ansible 2.9.x [https://docs.ansible.com/ansible/latest/roadmap/ROADMAP_2_9.html] or superior using a Python 3 interpreter

	The full Openstack client [https://pypi.org/project/openstackclient/] python module

	Docker [https://pypi.org/project/docker/] Python module

It is suggested that Ansible is installed inside the virtualenv of Krake.

pip install "ansible>=2.9" docker openstackclient

Check the version and Python executable of the Ansible installation:

ansible --version

ansible 2.9.2
 config file = None
 configured module search path = ['/path/to/home/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules']
 ansible python module location = /path/to/virtualenv/lib/python3.6/site-packages/ansible
 executable location = /path/to/virtualenv/bin/ansible
 python version = 3.6.8 (default, Oct 7 2019, 12:59:55) [GCC 8.3.0]

Krake infrastructure deployment

The Krake infrastructure is provisioned by a set of Ansible playbooks.
The infrastructure is split into multiple separate OpenStack Heat stacks.
Every Heat stack is provisioned by its own Ansible playbook. The complete infrastructure
can be created by the top-level site.yml playbook.

Krake YAML inventory file hosts.yml needs to be created. Use the example file and
adjust it. The only parameter that needs to be modified is the keypair
variable. It should name an existing OpenStack keypair. If the corresponding
key file is not ~/.ssh/id_rsa specify it in the key_file parameter.

It is assumed that environmental variables for authentication
against OpenStack project exist. They can be set by sourcing the OpenStack RC
file.

cd ansible/
cp hosts.yml.example hosts.yml
Get list of all existing OpenStack keypairs
openstack keypair list

The complete infrastructure can be created by the top-level site.yml playbook.

ansible-playbook -i hosts.yml site.yml

Each infrastructure component can by created separately by corresponding
ansible playbook e.g. the Krake application infrastructure can be created by Krake playbook.

ansible-playbook -i hosts.yml krake.yml

Table of available playbooks:

	Krake Infrastructure component

	Playbook name

	Top-level playbook

	site.yml

	Krake application

	krake.yml

	Central IdP instance

	central_idp.yml

	Devstack instance

	devstack.yml

	Gateway SSH jump host

	gateway.yml

	Network “virtual” host

	network.yml

	Prometheus server instance

	prometheus.yml

	Minikube cluster

	minikube_cluster.yml

	Magnum cluster

	magnum_cluster.yml

Krake Ansible directory structure

Ansible related-files are stored in the ansible/ directory of the repository.
Each sub-directory groups files based on Ansible best practices recommendations.

	Sub-directory / File

	Description

	ansible.cfg

	Local Ansible configuration

	hosts.yml

	Krake YAML inventory file

	plugins/

	Custom Ansible plugins

	files/

	Heat stack templates and files

	plugins/

	Custom Ansible plugins

	group_vars/

	Ansible group variables used as default values

	roles/

	Files for reusable Ansible roles

	utils/

	Krake Ansible helper scripts

Access through the gateway

To compartmentalize the infrastructure, all machines deployed by Krake are present on
the same OpenStack private network. Only the gateway is associated with a floating IP
and can thus be accessed externally. All other machines can be reached through the
gateway.

To simplify this process, the wireguard [https://www.wireguard.com/] VPN is installed on the gateway when deployed.
After the deployment, for each wireguard peer set for the gateway in the host file (see
Inventory structure), a wireguard configuration file is created
in the etc directory where the inventory files are created (ansible/.etc by
default). The files names have the following syntax: wg_<peer_name>.conf.

To use this file you have to:

	install wireguard locally. If you are using Ubuntu, you can use the following command:

$ sudo apt install wireguard

	generate a wireguard key:

$ umask 077
$ wg genkey > privatekey
$ wg pubkey < privatekey > publickey

2.1 open the wg_<peer_name>.conf and change the REPLACEME placeholder with the private key that corresponds to the peer.

2.2 Use SSH to connect to the krake-gateway-server. Check the gateway server and if necessary adjust to accommodate the correct wireguard keys. Replace the REPLACEME placeholder with the public key. You can find the public key in the directory under /etc/wireguard :

 [Interface]
 PrivateKey = <INSERT_PRIVATE_WIREGUARD_KEY>
 Address = 10.9.0.1

 [Peer]
 PublicKey = <INSERT_PUBLIC_KEY_FROM_GATEWAY_SERVER>

Endpoint = 185.128.119.165:51820
AllowedIPs = 10.9.0.0/24, 192.168.0.0/24

	bring the wireguard interface up by using:

$ wg-quick up <path_to_file>/wg_<peer_name>.conf

Example:
$ wg-quick up ansible/.etc/wg_my-peer.conf

	you can now SSH into the other machines on the private network:

$ ssh ubuntu@<krake_VM_private_ip>

The wireguard interface can be brought down by using:

$ wg-quick down <path_to_file>/wg_<peer_name>.conf

Example:
$ wg-quick down ansible/.etc/wg_my-peer.conf

Important

If several Krake deployments are managed from a single machine, the peer names
should have a different value, to avoid conflicts with the wireguard network
interfaces.

If several network interfaces are up at the same time, then the Krake private
networks should not overlap. So if one has for instance the CIDR 192.168.0.0/24,
another deployment should use something independent, such as 192.168.1.0/24.

Variables

This sections describes Krake Ansible variables definition. Variables are stored
in the group_vars/ directory or directly in the inventory file hosts.yml.
Inventory file defines variables on global level or on a host group level (see Inventory).

Variables definition

Krake Ansible variables stored in group_vars/ directory are structured into files
where the filename matches the inventory host group name. Global variables common for
all inventory host groups are defined in all.yml variable file.
Following section describes files and variables used by Krake Ansible playbooks.

	all.yml

	
	etc_dir

	The directory of JSON files which store inferred information from hosts by krake_inventory plugin

	central_idps.yml

	
	keystone_port

	Central IdP keystone port

	secgroup_name

	Security group name

	flavor

	Flavor manages the sizing for the compute, memory and storage capacity of the host

	floating_ip

	Enables the use of public IP address

	git_branch

	Git branch name

	devstack.yml

	
	prometheus_port

	Prometheus server port

	service_provider_port

	Prometheus clients port

	template_name

	Name of the default kubernetes cluster template

	cluster_keypair

	Name of the default keypair that is used to spawn kubernetes clusters via Magnum

	idp_name

	Central IdP name

	federated_domain_name

	Federated domain name

	federation_protocol_name

	Federation protocol name

	idp_mapping_name

	Central IdP mapping name

	flavor

	Flavor manages the sizing for the compute, memory and storage capacity of the host

	floating_ip

	Enables the use of public IP address

	git_branch

	Git branch name

	gateways.yml

	
	flavor

	Flavor manage the sizing for the compute, memory and storage capacity of the host

	wireguard_port:

	Port on which the wireguard service will listen to on the gateway.

	krake_apps.yml

	
	flavor

	Flavor manages the sizing for the compute, memory and storage capacity of the host

	floating_ip

	Enables the use of public IP address

	api_host

	OpenStack Heat template API name

	api_port

	OpenStack Heat template API port

	etcd_host (string)

	Name of the etcd container started using docker-compose.

	etcd_port (int)

	Port of the etcd cluster in the etcd container started using docker-compose.

	etcd_peer_port (int)

	Peer listening port of the etcd cluster in the etcd container started using docker-compose.

	api_host (string)

	Name of the Krake API container started using docker-compose.

	api_port (int)

	Port that can be used to reach the Krake API present in the container started using docker-compose.

	enable_tls (boolean)

	Enable or disable TLS support for communications with the API (for the API, controllers and Rok utility).
The certificates need to be added manually into the /etc/krake directory in the Krake VM.

	worker_count (integer)

	On each Controller, amount of working units that will handle resources received concurrently.

	debounce (float)

	On each Controller, timeout (in seconds) for the worker queue before handing over a resource,
to wait for an updated state.

	complete_hook_user (string)

	Name of the user for the “complete” hook.

	complete_hook_cert_dest (file path)

	Path inside the deployed Application where the certificate and its key will be
stored (for the “complete” hook).

	complete_hook_env_token (string)

	Name of the environment variable that will contain the token in the deployed
Application.

	complete_hook_env_url (string)

	Name of the environment variable that will contain the URL of the Krake API in
the deployed Application.

	external_endpoint (URL, optional)

	URL of the Krake API that will be reachable for any deployed Application.

	use_private_ip (boolean)

	If set to True, and no external endpoint has been set, the URL for the external
endpoint (see above) will be computed automatically, using the Krake API private
IP, its port and the “http” or “https” scheme depending on the status of TLS on
the Krake API (enabled or disabled).

	shutdown_hook_user (string)

	Name of the user for the “shutdown” hook.

	shutdown_hook_cert_dest (file path)

	Path inside the deployed Application where the certificate and its key will be
stored (for the “shutdown” hook).

	shutdown_hook_env_token (string)

	Name of the environment variable that will contain the token in the deployed
Application.

	shutdown_hook_env_url (string)

	Name of the environment variable that will contain the URL of the Krake API in
the deployed Application.

	magnum_clusters.yml

	
	prometheus_port

	Prometheus server port

	magnum_path

	Magnum path

	kube_api_config

	Path of kubernetes configuration file

	user_role

	Federated user role

	user_project

	Federated project name

	minikube_clusters.yml

	
	api_port

	OpenStack Heat template api port

	minikube_install_dir

	Minikube installation directory path

	minikube_version

	Minikube version

	kubectl_version

	Kubectl version

	kube_api_config

	Kubectl api configuration file path

	minikube_path

	Minikube keystone path

	user_role

	Federated user role

	user_project

	Federated project name

	flavor

	Flavor manages the sizing for the compute, memory and storage capacity of the host

	floating_ip

	Enables the use of public IP address

	prometheus.yml

	
	prometheus_admin_pass

	Prometheus server admin password

	grafana_admin_pass

	Grafana server admin password

	ports

	Prometheus server VM open ports

	flavor

	Flavor manages the sizing for the compute, memory and storage capacity of the host

	floating_ip

	Enables the use of public IP address

	git_branch

	Git branch name

Inventory

This sections describes the Ansible [https://www.ansible.com/] inventory of the Krake project.
Ansible works against multiple infrastructure hosts. Hosts are configured in an inventory
file hosts.yml which is a standard Ansible YAML inventory that uses multiple groups [https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#hosts-in-multiple-groups] structure and a
custom krake_inventory plugin (see auto plugin [https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html#the-auto-plugin]).

Inventory plugin

The krake_inventory custom plugin loads the JSON file defined by variable
hosts_file and augments the host variables with dynamic variables
(e.g. public and private IP addresses) depending on host.
The location of JSON file which stores inferred information can be configured by
specifying the hosts_file variable in the all group .
If it is not specified it defaults to .etc/<inventory-filestem>.json.

Inventory structure

Krake inventory file hosts.yml uses Ansible multiple groups [https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#hosts-in-multiple-groups] structure
of inventory.

Global variables for all hosts are defined under the vars sub-section.
This sub-section defines following:

	keypair

	OpenStack SSH key pair name of public ssh key which will be used for accessing the infrastructure to deploy hosts.
Different keys could be defined directly for specific group or host.

	key_file

	SSH private key file path on local computer for corresponding keypair. If key_file is set to null, the default SSH identity
(~/.ssh/id_rsa) will be used.

	gateway

	SSH jump host that is used to access the OpenStack instances. By
default, no OpenStack server has a floating IP assigned except hosts in
the gateways group. All other hosts use the gateway host variable to
define a SSH jump host. Wireguard is also installed on the gateway, see
Access through the gateway

	authorized_keys - optional

	List of additional authorized SSH keys, which can be used for accessing the hosts.

Each Krake infrastructure host is defined by corresponding host group sub-section in Krake inventory file.
The default parameters for every host group are defined in the group_vars/
directory where the filename matches the group name.
Krake inventory file defines following host groups and host variables:

	gateways

	SSH jump host that is used to access the OpenStack instances.

	network

	Inventory name of the network on which this SSH jump host should be deployed

	vpn_cidr

	VPN Classless Inter-Domain Routing definition (e.g. 10.9.0.0/24). This will
define the wireguard network. Each peer on this network (the gateway and users
or administrators of the deployment) will have a specific address on this
network.

	wireguard_peers

	List of all wireguard peer for whom access should be granted on the gateway.
Several peers can be added. A wireguard configuration file will be created for
each peer.

	name

	The name of the peer. This string is used to differentiate the different
peers from each other. It will also be given to the wireguard network
interface. The value can be arbitrary, but should be unique per deployment,
or over deployment if you plan on managing several ones with the same
machine.

	public_key

	The wireguard public key of the peer.

	IP

	Set the IP that will be given to the current peer in the wireguard network.
Each peer should be given a different IP to prevent conflicts. The IP can
be chosen in the vpn_cidr network, as long as it is not the IP given to
the gateway (which is the first in the network by default).

	networks

	Networks group define “virtual” hosts. These hosts exist purely for provisioning purpose. No machines are associated with them.

	subnet_name

	Subnet name

	subnet_cidr

	Subnet Classless Inter-Domain Routing definition (e.g. 192.168.0.0/24)

	public_network

	Public network type (e.g. shared-public-IPv4)

	router_name

	Router name

	common_secgroup_name

	Secure group name

	central_idps

	Central IdP host group used for keystone federation of Krake infrastructure.

	network

	Inventory name of the network on which this IdP should be deployed

	devstacks

	Devstack host group used for deployment of Krake devstack backends.

	id

	Unique DevStack ID. This ID is also used to define the IP network of the DevStack instance in the private network

	network

	Inventory name of the network on which this DevStack should be deployed

	idp

	Inventory name of the IdP that should be used for federation by this DevStack

	prometheus

	Inventory name of the Prometheus server that should be used for the monitoring of this DevStack backend

	magnum_clusters

	Magnum cluster host group used for deployment of magnum clusters on underlying devstack backend.

	name

	Magnum cluster name

	devstack

	Inventory name of underlying devstack backend which hosted the magnum cluster deployment

	prometheus

	Inventory name of the Prometheus server that should be used for the monitoring of this magnum cluster

	use_keystone

	Enables keystone deployment on this magnum cluster

	minikube_clusters

	Minikube cluster host group used for deployment of minikube clusters.

	name

	Minikube cluster name

	network

	Inventory name of the network on which this minikube cluster should be deployed

	idp

	Inventory name of the IdP that should be used for federation by this minikube

	use_keystone

	Enables keystone deployment on this minikube cluster

	prometheus

	Prometheus host group used for deployment of Prometheus monitoring server.

	hostname

	Prometheus VM host name

	network

	Inventory name of the network on which this minikube cluster should be deployed

	krake_apps

	Krake application host group used for deployment Krake infrastructure

	hostname

	Krake VM host name

	network

	Inventory name of the network on which this minikube cluster should be deployed

Bootstrapping

After Krake has been installed and runs, the database is still empty. To allow easy
insertion of resources during initialisation, a bootstrap script is present, namely:
krake_bootstrap_db. It is used along with YAML files in which the resources
are defined.

Requirements for bootstrapping:

	Krake should be installed;

	the database should be started.

Usage

Workflow

The script is given several files, each with one or several resource definitions.
These definitions should follow the structure of the data defined in krake.data.
See Structure.

If the insertion of at least one resource fails, all previous insertions are rolled
back. This ensures that the database remains in a clean state in all cases.

The insertion will be rolled back in the following cases:

	the structure of a resource was invalid and its deserialization failed;

	a resource belongs to an API or a kind not supported by the bootstrapping script;

	a resource is already present in the database. This can be overridden using the
--force flag (see the force argument). In this case, a resource already present
will be replaced in the database with the currently read definition. In case of
rollback, the previous version of the resource will be put back in the database.

Command line

The simplest command is to give one or several files as input, for example:

$ krake_bootstrap_db file_1.yaml file_2.yaml

Other arguments can be used:

	--db-host (address):

	If the database is not present locally, the host or address can be specified
explicitly. Default: localhost.

	--db-port (integer):

	If the database is not present locally, the port can be specified explicitly.
Default: 2379.

	--force:

	If set, when the script attempts to insert a resource that is already in the
database, the resource will be replaced with its new definition. If not, an error
occurs, and a rollback is performed.

The content of the file can alternatively be passed by stdin, using the - option:

cat file_1.yaml | krake_bootstrap_db -

This can become very useful when starting the command with a container running Krake. If
the file is not present in the container, and you do not want to use a volume, you can
still execute the following:

docker exec -i <krake_container> krake_bootstrap_db - < file_1.yaml

Structure

Only resources defined in krake.data that are augmented with the
krake.data.persistent decorator should be inserted with the
krake_bootstrap_db script.

Each file must have a YAML format, with each resource separated with the ---
separator. The API name, the resource kind and its name must be specified (in the
metadata for the name).

Thus the minimal resource to add must have the following structure:

api: foo
kind: Bar
metadata:
 name: foo_bar

This will add a Bar object with the name foo_bar, with Bar defined in the
API with name foo.

An actual resource would have more values to fill, see the following example with a
Krake Role and RoleBinding definitions:

api: core
kind: Role
metadata:
 name: my-role
rules:
- api: 'my-api'
 namespaces:
 - 'my-namespace'
 resources:
 - 'my-resource'
 verbs:
 - list
 - get

api: core
kind: RoleBinding
metadata:
 name: my-rolebinding
roles:
- my-role
users:
 - me

Danger

The structure of a resource added in the database is checked against the definition
of this resource kind. This means that the attributes’ name and kind are checked.
However, the bootstrapping script does not ensure that the relationships between the
resources are valid.

For instance, the RoleBinding my-rolebinding refers to the Role
my-role. If this role is not in the database, or its name has been misspelled,
the bootstrapping script will not detect it, and the database will be inconsistent.

Existing definitions

Some files are already present in the Krake repository with the definitions of
different resources.

Authorization

To use the RBAC authorization mode, roles need to be defined, using Role objects.
They need to be present in the database, and can either be added manually, using the
API, or with the bootstrapping:

$ krake_bootstrap_db bootstrapping/base_roles.yaml

Development and tests

To test the migration, support/prometheus or support/prometheus-mock script can
be used, or simply static metrics. However, in this case, GlobalMetric and
GlobalMetricsProvider objects need to be created. Two bootstrap definition files
are present in support/ for adding Prometheus and static metrics and metrics
provider, respectively prometheus_metrics.yaml and static_metrics.yaml.

They can be easily processed using:

$ krake_bootstrap_db support/prometheus_metrics.yaml support/static_metrics.yaml

Security principles

This chapter discusses the different security options supported by Krake, and gives
explanation on how to set up Krake securely.

Overview

When sending a request to the API, Krake uses two mechanisms to limit resource access:

	first the authentication of the user;

	then, using this information, an authorization mechanism describes which resources
can be accessed by this user.

Important

There are no user in Krake as actual stored resource. Krake does not manage users,
they should be handled by external services (for instance Keystone authentication).
Users are identified internally using simple strings. The authentication method
ensures that the right string is obtained from a request, and the authorization
ensures that the user represented by this string has the right accesses to the
resources.

Important

If a Krake component (a controller, or Rok) communicates with the API, the same
process is performed. In this case, the user is actually the component itself.

Authentication

To authenticate the user, five different mechanisms can be used: static, Keystone,
Keycloak, TLS or anonymous. When a request is received by the API, all the mechanisms
enabled in this list will attempt to authenticate the user that sent the request. If the
first failed, the second will try, and so on, until all failed, and an HTTP error
“Unauthorized (401)” will be sent back to the API. The first that succeeds returns the
user that has been authenticated. It is then used during the authorization process.

The order of priority between the authentication mechanisms is as follow (if the
mechanisms are enabled):

	static:

	This mechanism should never be used in production. When enabled, this mechanism
will authenticate any request as coming from a user with a given username. This
username needs to be specified in the API configuration.

	Keystone:

	authenticate incoming requests on the API using an OpenStack Keystone [https://docs.openstack.org/keystone/latest/] server. A
token must first be requested to the Keystone server. This token should then be
sent along with any request to the API as the value of the Authorization header
in the HTTP request. See Keystone authentication for more
information.

	Keycloak:

	authenticate incoming requests on the API using a Keycloak server. A token must
first be requested to the Keycloak server. This token should then be sent along with
any request to the API as the value of the Authorization header in the HTTP
request. See Keycloak authentication for more information.

	TLS:

	authenticate incoming requests on the API using the common name attribute of
certificates. This name is then used as username. It means TLS needs to be enabled
on the API, and thus, on all Krake components. See
Certificate authentication for more information.

	Anonymous:

	This mechanism should never be used in production. Set using
allow_anonymous to true in the configuration. If the user has not been
authenticated by any previous mechanism, and if anonymous users are allowed, the
user will be authenticated as system:anonymous.

The authentication mechanisms can be enabled or disabled in the API configuration file,
along their specific parameters
(see Authentication and authorization).

Authorization

The second phase of security is the authorization of an authenticated user. The user is
verified against the chosen authorization policy, called authorization mode in the
following. If a user has the right to access and perform the chosen action on the
resource currently requested, the request is processed. Otherwise the API returns an
HTTP 403 error.

Krake uses three different authorization modes to connect to the API, always-allow,
always-deny and RBAC.

	always-allow

	all requests are always accepted, for any user;

	always-deny

	all requests are always rejected, for any user;

	RBAC (for Role-Based Access Control)

	Krake will use roles to decide the resources that a user can access, and the
action that this user can perform on these resources.

Warning

The first two modes are only present for testing purposes and should never be used
in production. Only RBAC should be used in production.

The authorization mode can be chosen in the configuration file (see
Authentication and authorization).

Keystone authentication

The Keystone authentication uses the OpenStack Keystone [https://docs.openstack.org/keystone/latest/] service to obtain the identity
of a user. The workflow to send a request to the API is as follow if Keystone
authentication is enabled:

	(the user must be registered in Keystone;)

	the user sends a request to the Keystone server to obtain a token;

	an HTTP request is sent to the API, with this token used in the header.

Step 1: Kesytone token request

To request a token to the Keystone server, you can use the following example by
replacing the values with the corresponding ones for your setup:

$ curl -sD - -o /dev/null -H "Content-Type: application/json" \
 http://<keystone_server>/v3/auth/tokens \
 -d '{
 "auth": {
 "identity": {
 "methods": [
 "password"
],
 "password": {
 "user": {
 "domain": {
 "name": "<keystone_user_domain_name>"
 },
 "name": "<keystone_username>",
 "password": "<keystone_password>"
 }
 }
 },
 "scope": {
 "project": {
 "domain": {
 "name": "<keystone_project_name>"
 },
 "name": "<keystone_project_domain_name>"
 }
 }
 }
 }'

The following example is for the support/keystone/keystone script:

$ curl -sD - -o /dev/null -H "Content-Type: application/json" \
 http://localhost:5000/v3/auth/tokens \
 -d '{
 "auth": {
 "identity": {
 "methods": [
 "password"
],
 "password": {
 "user": {
 "domain": {
 "name": "Default"
 },
 "name": "system:admin",
 "password": "admin"
 }
 }
 },
 "scope": {
 "project": {
 "domain": {
 "name": "Default"
 },
 "name": "system:admin"
 }
 }
 }
 }'

You will get an output close to the following, where you can find the expected token:

HTTP/1.0 201 CREATED
Date: Tue, 42 Dec 2077 10:02:11 GMT
Server: WSGIServer/1.0 CPython/3.8
Content-Type: application/json
Content-Length: 1234
X-Subject-Token: XXXXXXXXXXXXXXXXXXXXXX <--- this is the token
Vary: X-Auth-Token
x-openstack-request-id: xxx-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

From this output, you can obtain your token. A suggestion is to keep it in your shell
as environment variable, for instance:

$ TOKEN=XXXXXXXXXXXXXXXXXXXXXX

Step 2: Keystone token usage

Using your token, you can then communicate with the Krake API:

$ curl -k -H "Accept: application/json" -H "Authorization: $TOKEN" \
 <scheme>://<krake_api>/<query>

For instance, to get the current authenticated user on Krake installed locally, with
TLS support:

$ curl --cacert ./tmp/pki/ca.pem -H "Accept: application/json" -H
 "Authorization: $TOKEN" https://localhost:8443/me

Keycloak authentication

The Keycloak authentication uses a Keycloak [https://www.keycloak.org/] service to obtain the identity of a user.
The workflow to send a request to the API is as follow if Keycloak authentication is
enabled:

	(the user must be registered in Keycloak;)

	the user sends a request to the Keycloak server to obtain a token;

	an HTTP request is sent to the API, with this token used in the header.

Step 1: Keycloak token request

Query

To request a token to the server, multiple ways are supported by Keycloak. If the server
has been set up for direct access grants, you can use the following example by replacing
the values with the corresponding ones for your setup:

$ curl -s http://localhost:9080/auth/realms/krake/protocol/openid-connect/token \
 -d 'grant_type=password' \
 -d 'username=<username>' \
 -d 'password=<password>' \
 -d 'client_id=<client_name>' \
 -d 'client_secret=<client_secret>'

For the support/keycloak script, you can use the following command to get a token:

$ support/keycloak token

Internally, something similar to the following is used, with all values set by the
script:

$ curl -s http://localhost:9080/auth/realms/krake/protocol/openid-connect/token \
 -d 'grant_type=password' \
 -d 'username=krake' \
 -d 'password=krake' \
 -d 'client_id=krake_client' \
 -d 'client_secret=AVeryCoolAndSecureSecret'

Response

Using the cURL queries, you will get a JSON with the following structure:

{
 "access_token":"XXXXXXXXXXXXXXXX",
 "expires_in":60,
 "refresh_expires_in":1800,
 "refresh_token":"<refresh_token>",
 "token_type":"bearer",
 "not-before-policy":0,
 "session_state":"9c22a6df-0997-4d3d-a540-239f85346008",
 "scope":"profile email"
}

From this output, you can obtain your token from the access_token field. A
suggestion is to keep it in your shell as environment variable, for instance:

$ TOKEN=XXXXXXXXXXXXXXXXXXXXXX

With the support/keycloak direct command, you get the token directly, thus you could
simply use:

$ TOKEN=$(support/keycloak token)

Step 2: Keycloak token usage

Using your token, you can then communicate with the Krake API:

$ curl -k -H "Accept: application/json" -H "Authorization: $TOKEN" \
 <scheme>://<krake_api>/<query>

For instance, to get the current authenticated user on Krake installed locally, with
TLS support:

$ curl --cacert ./tmp/pki/ca.pem -H "Accept: application/json" -H
 "Authorization: $TOKEN" https://localhost:8443/me

Certificate authentication

With the TLS support enabled on the API configuration, the requests to the API can only
be performed using HTTPS. This allows Krake to obtain information about the sender
through the certificates. Especially, Krake can use the common name to identify the
user that sent the request.

This authentication mechanism should always be used in a production environment. It
also allows the authentication of the Krake components. The scheduler, the garbage
collector or any other controller should have a certificate with a specific common
name. This name can then be used along with the RBAC mode and a specific
RoleBinding to allow the controller to access the resources it needs.

Important

With TLS support, all Krake components will use certificates with their
corresponding key. All components (API, controllers and rok) must use the same
CA, and the certificates they use for communication must also be signed using this
CA.

Note

If an external endpoint is specified in the Kubernetes controller configuration for
the complete hook, then this host must also be specified in the certificate of the
API.

RBAC Authorization

The Role-Based Access Control (or RBAC) is a model of resource access. Each user is
given one or several roles, and each role has access to one or several resources,
and/or actions.

When RBAC is enabled, roles need to be defined and bound to users using respectively
Role and RoleBinding core API objects. They have their own endpoints for
creation, update, deletion… (/core/roles and /core/rolebindings
respectively).

Role bindings

The RoleBinding objects defines a connection between one or several roles to one or
several users.

Roles

A Role defines different rules: each rule describes which resource can be accessed
by a user with this role, and which action can be performed. The Role can then be
applied to several users, which is the purpose of RoleBinding objects.

Example

[image: ../_images/rbac.png]

In the previous example, the user 1 and 2 have both been given the roles A and C. It
means they can both get and list the resources X, Y and Z.

Let’s now say we want to have the following minimal example:

[image: ../_images/rbac-minimal.png]

api: core
kind: Role
metadata:
 name: my-role
rules:
- api: 'my-api'
 resources:
 - 'my-resource'
 namespaces:
 - 'my-namespace'
 verbs:
 - list
 - get
- api: 'my-other-api'
 resources:
 - 'first'
 - 'second'
 namespaces:
 - 'my-namespace'
 verbs:
 - update
 - delete

In the above example definition of a Role, a user with this role can:

	list or read the my-resource resources defined in the my-api API, that
belong to the my-namespace namespace (first rule);

	update or delete the first and second resources defined in the
my-other-API API, also in the my-namespace namespace (second rule).

api: core
kind: RoleBinding
metadata:
 name: my-rolebinding
roles:
- my-role
- my-other-role
users:
- me
- he
- she

In the above example, the RoleBinding object binds the my-role and the
my-other-role to the users me, he and she.

Security Guidelines

Warning

DISCLAIMER: The steps described in this chapter do not ensure a fully secure Krake
infrastructure. They are the minimal security steps that are recommended. An actual
fully secure setup need general security measures on all its components and on the
setup itself, not only for the Krake infrastructure

This section is a guide that describes all the steps to create a minimal secure Krake
infrastructure.

What you need:

	Krake installed;

	the Krake repository (optional);

	a certificate authority (CA) and at least five certificates and their respective
keys (signed with this CA). To follow this guide easily, the common names of the
certificates shall be:

	system:gc

	system:scheduler

	system:kubernetes

	system:magnum

	system:infrastructure

	system:admin

	system:complete-signing

	system:shutdown-signing

	an additional certificate is necessary for the API.

These names are the ones present in the bootstrapping file called
base_roles.yaml. They can naturally be modified to follow your needs.

The support/pki script can also generate them for testing purpose, example:

$ support/pki system:admin

The certificate with system:complete-signing will be used for signing new
certificates, thus would need to be set for signing purposes:

$ support/pki system:complete-signing --intermediate-ca

The certificate with system:shutdown-signing will be used for signing new
certificates, thus would need to be set for signing purposes:

$ support/pki system:shutdown-signing --intermediate-ca

If Krake is not deployed locally, you also need to set its external endpoint as TLS
subject alternative names, for instance:

$ support/pki system:api-server --host 1.2.3.4 --host example.com

Configuration of the API

The first step is to configure the API to use the right authentication and
authorization modes.

Configuration of the authentication:

First, disable the static and anonymous authentications in the API configuration:

authentication:
 allow_anonymous: false

 #...
 static:
 enabled: false
 name: system:admin

Then, enable the TLS support on the API:

tls:
 enabled: true
 cert: <path_to_your_certificate>
 key: <path_to_your_key>

 client_ca: <path_to_your_client_ca>

If you want to use Keystone or Keycloak authentication additionally, you should set the
configuration as well:

authentication:
 # ...

 strategy:
 # Keystone authentication
 keystone:
 enabled: true
 endpoint: <your_keystone_endpoint>

 # Keycloak authentication
 keycloak:
 enabled: true
 endpoint: <your_keystone_endpoint>
 realm: <your_keycloak_realm>

Krake contains an example Keystone server under support/keystone/Dockerfile.
This is a docker file, which creates an image with a secure Keystone instance, that
can be accessed over HTTPS.

Configuration of the authorization:

To set the RBAC authorization mode, change the following line
in the API configuration:

authorization: RBAC

Configuration of the Controllers

You need to enable the TLS support on all controllers:

tls:
 enabled: true
 client_ca: <path_to_your_client_ca>
 client_cert: <path_to_your_client_cert>
 client_key: <path_to_your_client_key>

The API endpoint must be modified to use HTTPS:

api_endpoint: https://<endpoint>

This certificate must indicate a common name only used by the current controller. Let’s
refer to it as system:<controller> as an example. Using TLS authentication,
system:<controller> will be the username of the Controller every time this
controller will connect to the API, see Authentication

When using bootstrapping, the “username” of the controllers must be adapted to
correspond to the ones in the RoleBinding objects added in the database. See
Database bootstrapping.

If the bootstrapping file present in the repository is used (base_roles.yaml), the
common names of the controller certificates must be:

	system:gc for the garbage collector;

	system:scheduler for the scheduler;

	system:kubernetes for the Kubernetes controller;

	system:complete-signing for the signing certificate of the “complete” hook,
see Complete.

	system:shutdown-signing for the signing certificate of the “shutdown” hook,
see Shutdown.

	system:magnum for the Magnum controller.

Configuration of rok

api_url: https://<endpoint> # must use HTTPS
user: <rok_user>

tls:
 enabled: true
 client_ca: <path_to_your_client_ca>
 client_cert: <path_to_your_client_cert>
 client_key: <path_to_your_client_key>

The common name used by the certificate must match the one from <rok_user>. This
name will be used as username.

If the bootstrapping file present in the repository is used (base_roles.yaml),
the certificate used by the administrator must have system:admin as common name,
and <rok_user> must then match it.

Database bootstrapping

For the RBAC authorization mode to work, Role and RoleBinding objects need to
be put in the database.

They can be either added manually using the command line, or more simply added by using
bootstrapping (see Bootstrapping). The roles for the Krake
components and the administrator are defined already in
bootstrapping/base_roles.yaml. Thus they can all be added with:

$ krake_bootstrap_db bootstrapping/base_roles.yaml

When using the base_roles.yaml, the usernames in the RoleBinding for the
controllers must match the ones used by the certificates.

For instance for the garbage collector, if the RoleBinding is defined like this:

api: core
kind: RoleBinding
metadata:
 name: rolebinding:system:gc
roles:
- role:system:gc
users:
- system:gc

it means that the certificate common name for the garbage collector must be
system:gc. It is probably easier to adjust the base_roles.yaml to match your
needs.

Additional roles and role bindings can also be added to the database using the same
bootstrapping method, by modifying the base_roles.yaml, or by writing another file
and bootstrapping it into the database.

Administrator

The role role:system added in the base_roles.yaml corresponds to an
administrator role, and the role binding rolebinding:system allows a user called
system:admin full access to all Krake resources from all APIs. These two can
naturally be modified if the administrator should have another name.

Important

Note that if no administrator user is created, Role and RoleBinding objects
cannot be created through the API, but must be added to the database directly.

CORS

The Cross-origin resource sharing (CORS [https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS]) mechanism was enabled on Krake but the fields
are set to be quite non-restrictive. By default, the Access-Control-Allow-Origin is
set to *. With this setup, sending request through a browser could be dangerous. A
user could first connect to a valid website with some allowed authentication token and
send requests to Krake. Then the user goes on a malicious website, which may be able to
reuse the token, as the default value accepts any origin, so any URL. To prevent this
situation, the value for the Access-Control-Allow-Origin field can be set for the
Krake API, see the Authentication and authorization part of
the configuration.

Developer Documentation

This section of the documentation is dedicated to all contributors of the
project. It describes the overall system architecture, explains the core
concepts of the system and development principles that should be followed when
contributing.

Furthermore, the layout of the repository is explained and a complete Python
API reference of all modules is provided.

Table of Contents

	Architecture
	API

	Control Plane

	Concepts
	Overview

	API Conventions

	Control Plane

	Authentication and Authorization

	Directories

	Design Principles
	API

	Control Logic

	Architecture

	Extensibility

	Availability

	Development

	Scheduling
	Application handler

	Cluster handler

	Magnum cluster handler

	Metrics and Metrics Providers

	Constraints

	Application hooks
	Complete

	Shutdown

	TLS

	Examples

	Kubernetes Application Controller
	Reconciliation loop

	Kubernetes Application Observer
	Reconciliation

	Kubernetes Application Observer

	Kubernetes Cluster Controller

	Kubernetes Cluster Observer
	Kubernetes Cluster Status Polling

	States

	Node Health

	Infrastructure Controller
	Reconciliation loop

	States

	Garbage Collection
	Dependency mechanism

	Overview

	Garbage collection workflow

	Dependency graph

	API Generation
	Role

	Usage

	Templating

	Generated elements

	TOSCA
	Introduction

	TOSCA Template

	TOSCA/CSAR Workflow

	Examples

	Krake Reference
	Module hierarchy

	Krake

	API Server

	Client

	Controllers

	Data Abstraction

	Client Reference
	Fixtures

	Command Line Parser

Architecture

This chapters gives a high-level overview about the software architecture of
Krake. The following figure gives an overview about the components of Krake. The
components are described in more detail in the following sections.

[image: ../_images/components.png]

Krake components

API

The API is the central component of Krake. It holds the global state of the
system. Krake uses an abstraction for real world objects – e.g. Kubernetes [https://kubernetes.io/]
clusters or clouds (e.g. OpenStack [https://www.openstack.org/]) – managed or used by it. The objects are
represented as RESTful HTTP resources called API resources. These resources
are stored in an associated etcd [https://etcd.io/] database. Each resource is a nested JSON
object following some conventions that can be found in section
API Conventions.

The API is declarative: instead of sending commands one-by-one to the
infrastructure, the user just defines a desired end state, telling the
infrastructure exactly how it should look like. Then, the
Control Plane works in sync with the infrastructure to
find the best way to get there. This means that the actual control flow is
not exposed to the user.

Control Plane

The control plane is responsible for bringing the declarative API to life: it
synchronizes the declared desired state of a API resource with the managed
real world object (see also Control Plane on the concepts
chapter).

The control plane consists of a set of controllers. Normally, one controller
is responsible for one kind of resource, e.g. the Kubernetes Application
controller manages Kubernetes Application resources. Only API resources with
a changing state are managed by a controller.

System-level tasks are also handled by controllers:

	Garbage Collector

	Resources can depend on other resources. If an API resource is deleted,
dependents of the resource are also deleted automatically. This is called
cascading deletion. The garbage collector is the controller responsible
for executing the cascading deletion (see
Garbage Collection for more details).

	Infrastructure Controller

	The infrastructure controller performs life-cycle management of the real-world
Kubernetes clusters. (see
Infrastructure Controller for more details).

	Scheduler

	The scheduler is a very important controller responsible for binding
applications – high-level API resources for executing workloads – to a
platform managed by Krake.

Tip

For example, the scheduler binds Kubernetes applications to Kubernetes
clusters or selects clouds (e.g. OpenStack) for creating new Kubernetes
clusters.

The scheduler makes its decision based on a set of metrics provided by
external metrics providers (see Scheduling for more
details) as well as the availability of the clusters.
The decisions are periodically reevaluated, which could potentially lead to
migration of applications.

Control Loop

The following figure describes the basic control loop that is executed by any
controller.

[image: ../_images/operator-pattern.png]

Operator Pattern

The observation of an API resource is done via watching, a long running HTTP
request to the API notifying about changes of resources:

$ curl http://localhost:8080/kubernetes/namespaces/testing/applications?watch
{"type": "UPDATED", "object": {"metadata": …, "spec": …, "status": …}}
{"type": "DELETED", "object": {"metadata": …, "spec": …, "status": …}}
{"type": "UPDATED", "object": {"metadata": …, "spec": …, "status": …}}
…

Controller will read this feed, evaluate differences between the desired state
and the state of the managed real world object, act accordingly to this
difference and update the status of the resource.

Concepts

Krake is heavily inspired by the concepts of Kubernetes. If you are familiar
with the internal mechanisms of Kubernetes you should find many similarities
within Krake.

Overview

The central service of Krake is a RESTful HTTP API. The API is structured in
groups of APIs covering different technologies, e.g. core for the core
functionalities or kubernetes for Kubernetes-specific features. Each API
comprises multiple kinds of resources, e.g. the kubernetes API contains
Application or Cluster resources. The resources are used to describe the
desired state. The user can update the desired state by updating the
resource via simple PUT requests to the API.

In concept, every resource is handled by a Controller. The responsibility of
a controller is to bring the described desired state of a resource in sync
with the real world state. Some of the resources act as mere data bags, e.g.
kubernetes/Cluster resources simply describe how to connect to an existing
Kubernetes cluster. These resources do not have a corresponding controller
because no logic is needed for syncing desired and real world state.

API Conventions

Krake uses abstractions for real world resources managed by Krake, e.g.
Kubernetes clusters spawned on top of an OpenStack deployment. These
abstractions are represented as API resources encoded as nested JSON objects.

Metadata

Every resource MUST have the following metadata in a nested field called
metadata with the following structure:

	namespace

	A namespace is used to isolate access resources. Normally, a user does only
get access to a specific namespace. See
Authentication and Authorization for more details. This
field is immutable which means a resource cannot be migrated to another
namespace.

	name

	A string uniquely identifying a resource in its namespace. This name is
used in URLs when operating on an individual resource. This field is
immutable.

	uid

	A unique string in time and space used to distinguish between objects of the
same name that have been deleted and recreated. This field is immutable.

	finalizers

	A list of strings that can be added by controllers to block the deletion
of the resource in order to do some clean up work (finalizing). A resource
MUST not be deleted if there is at least one finalizer.

Controllers SHOULD process only finalizers that were added by them and
that are at the tail of the list. This ensures a strict finalizing order.

	created

	The timestamp when the resource was created. This field is immutable.

	modified

	The timestamp when the spec or metadata field of the resource was changed.

	deleted

	The timestamp when the resource was deleted. If this field is set, the
resource is in the in deletion state. This transition is irreversible.
In this state, no changes to the resource are allowed except removing
items from finalizers and updating the status. If finalizers
is empty and the resource is in deletion it will be removed from the
database. See Garbage Collection for more
details.

Spec and Status

By convention, the Krake API distinguishes between desired state of a
resource – a nested field called spec – and its real world state – a
nested field called status.

Every resource representing a real world object managed by Krake SHOULD have
a field called spec. If the state of the represented object cannot change,
the resource MAY have a spec field only which MAY be renamed to a more
appropriate name.

etcd

Internally, the Krake API uses etcd [https://etcd.io/] – a distributed and reliable key-value
store – as persistence layer. But this is considered an implementation detail
and no etcd-specific mechanisms are exposed via the REST API. This means that
the underlying database could be potentially replaced in the future if the
requirements of the project change. The “killer” feature of etcd is the
watching of keys and prefixes for changes.

Note

The distributed nature of etcd and its built-in support for observing
changes for specific keys were the main motivation why Krake switched from
a SQL-based persistence layer to etcd.

Control Plane

The API does not implement control logic. The task of reconciling between
desired state and real world state is done by so-called controllers.
Controllers are independent services watching API resources and reacting on
changes. The set of all controllers forms the Control Plane of Krake.

Controllers communicate with the API server: the desired state is fetched from
the API and status updates are pushed to the API. In theory, controllers can
be programmed with any technology (programming language) capable of
communicating with a REST HTTP interface.

Note

The first system architecture of Krake was event-based using message
queuing (RabbitMQ). The main issue with event-driven systems is that the
they get out-of-sync if a message gets lost. Hence, a lot of effort is
involved to make sure that no message loss occurs.

On the other hand, level-based logic operates given a desired state and
the current observed state. The functionality is resilient against loss of
intermediate state updates. Hence, a component can recover easily from
crashes and outages, which makes the overall system more robust. This was
the motivation for moving from an event-based system with message queuing
to a level-based system with reconciliation.

Authentication and Authorization

Access to the API is provided through a two-phased process.

	Authentication

	Each request to the Krake API is authenticated. Authentication verifies
the identity of the user. There are multiple authentication providers and
the API can be extended by further authentication mechanisms. If no
identity is provided, the request is considered to be anonymous. For
internal communication between controllers and API, TLS certificates
SHOULD be used.

	Authorization

	After the identity of a user is verified, it needs to be decided if the
user has permission to access a resource.

Krake implements a simple but powerful role-based access control (RBAC)
model. The core API provides Role resources describing access to
specific operations on specific resources potentially in specific
namespaces. A user is assigned to a role by another core resource
called RoleBinding.

Roles in Krake are permissive only. There is no way to deny access to
a resource through a role. At least one role a user is bound to needs to
allow access to the requested resource and operation. Otherwise access is
denied.

Directories

The Krake repository contains several main directories, which will be described here.

	ansible

	Contains all the configuration and the playbooks to install Krake using Ansible.

	docker

	Contains all file to start Krake in a Docker infrastructure.

	docs

	Contains the source files for Krake documentation.

	infra

	Contains scripts to deploy Krake. Not up-to-date.

	krake

	Contains the source code and the unit tests for the Krake application. More details are given in the Krake Reference.

	rok

	Contains the source code and the unit tests for the Rok command. More details are given in the Rok Reference.

	support

	Contains the utility scripts to create a simple local test environment.

Design Principles

This section contains a number of principles that should be followed when
extending Krake. The principles are very similar to the Kubernetes design
principles [https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/principles.md].

API

See also API Conventions.

	All APIs should be declarative.

	API resources should be complementary and composable, not opaque wrappers.

Note

For example, a Kubernetes cluster could be created on top of a managed
OpenStack project.

	The control plane should be transparent – there are no hidden internal
APIs.

	Resource status must be completely reconstructable by observation. Any history
kept (caching) must be just an optimization and not required for correct
operation.

Control Logic

	Functionality must be level-based, meaning the system must operate correctly
given the desired state and the current/observed state, regardless of how
many intermediate state updates may have been missed. Event/Edge-triggered
behavior must be just an optimization.

Note

There should be a CAP [https://en.wikipedia.org/wiki/CAP_theorem]-like theorem regarding the trade-offs between
driving control loops via polling or events about simultaneously
achieving high performance, reliability, and simplicity – pick
any two.

	Assume an open world: continually verify assumptions and gracefully adapt to
external events and/or actors.

Tip

For example, Krake allows users to kill Kubernetes resources under
control of a Kubernetes application controller; the controller just
replaces the killed resource.

	Do not assume any state transition or state that cannot be determined by
observation.

	Do not assume a component’s decisions will not be overridden or rejected, nor
for the component to always understand why.

Tip

For example, etcd may reject writes. The scheduler may not be able to
schedule applications. A Kubernetes cluster may reject requests.

	Retry, but back off and/or make alternative decisions.

	Components should be self-healing.

Tip

For example, if some state must be kept, e.g. cached, the content needs
to be periodically refreshed, so that if an item does get incorrectly
stored or a deletion event is missed, the kept state will be soon
synchronized, ideally on timescales that are shorter than what will
attract attention from humans.

	Component behavior should degrade gracefully. Actions should be prioritized
such that the most important activities can continue to function even when
overloaded and/or in states of partial failure.

Architecture

	Only the API server communicate with etcd, and no other components, e.g.
scheduler, garbage collector, etc.

	Components should continue to do what they were last told in the absence of
new instructions, e.g. due to network partition or component outage.

	All components should keep all relevant state in memory all the time. The
API server writes through to etcd, other components write through to the API
server, and they watch for updates made by other clients.

	Watch is preferred over polling.

Extensibility

	All components should be replaceable. This means there is no strong coupling
between components.

Tip

For example, the different scheduler should be usable without any changes
in another component.

	Krake is extended with new technologies/platforms by adding new APIs.

Availability

Note

High-availability (HA) is about removing single point of failure (SPOF).

	HA is achieved by service replication.

Todo

It needs to be decided on which level replication is introduced.

	Coarse grained

	Replicate “Krake master” with all included components, e.g. API
server, controllers etc.

	Fine grained

	Replicate single components. If a component is stateful – relevant
state should be kept in memory as stated in section
Architecture – the components should follow an
active-passive principle where only one replica of a component is
active at the same time. A etcd lease [https://etcd.io/docs/v3.3.12/dev-guide/interacting_v3/#grant-leases] may be a good option for this
but only the API should have direct access to etcd. A solution for
this would be to introduce special API endpoints for electing a leader
across multiple replicas.

Development

	Self-hosting of all components is the goal.

	Use standard tooling and de facto standards of the Python ecosystem.

	Keep dependencies as small as possible, but do not reinvent the wheel.

Scheduling

This part of the documentation presents the Krake scheduling component and
how the Krake resources are handled by the scheduling algorithm.

The Krake scheduler is a standalone controller that processes the following Krake
resources:

	Application

	Cluster

	Magnum cluster (Warning: Due to stability and development issues on the side of Magnum, this feature isn’t actively developed anymore.)

The scheduler algorithm selects the “best” backend for each resource based on metrics
of the backends and the resource’s constraints and specifications. The following sections
describe the application and Magnum cluster handlers of the Krake scheduler.

Application handler

The application handler is responsible for scheduling and rescheduling
(automatic migration) of the applications with non-deleted and non-failed states.
Applications with deleted or failed state are omitted from the scheduling.
Currently, the application handler considers every Kubernetes cluster.

Scheduling of Applications

	At first, the scheduler checks, if the clusters that will be considered and filtered
to host the application, are even ONLINE. If a cluster isn’t reachable, it is not
considered in the scheduling process.

	The application handler evaluates if all constraints of an application match the
available Kubernetes cluster resources. The application constraints define
restrictions for the scheduling algorithm. Currently, the custom resources constraint,
the cluster label constraint and the metric constraint are supported, see
Constraints. This is a first filtering step.

	Selected Kubernetes clusters could contain metrics definition. If the cluster contains
metrics definition, the application handler fetches metric values from the
corresponding metrics providers which should be defined in the metric resource
specification, see Metrics and Metrics Providers.

	Then, the score for each Kubernetes cluster resource is computed. The cluster score is
represented by a decimal number and is computed from Kubernetes cluster stickiness
and metric values and weights. More information on stickiness in the
Stickiness section. The Kubernetes clusters with defined metrics
are preferred. It means clusters which are not linked to any metric have a lower
priority than the ones with linked metrics:

	If there are no cluster with metrics: the score is only computed using the
stickiness;

	If there are clusters with metrics: the clusters without metrics are filtered out
and the scores of the ones with metrics are computed and compared.

This step is a ranking step.

	The score formula for a cluster without metrics is defined as follows:

\[score = sticky_{value} \cdot sticky_{weight}\]

	The score formula for a cluster with n metrics is defined as follows:

\[score = \frac{(sticky_{value} \cdot sticky_{weight}) + \sum\limits_{i=1}^n metric_{value_i} \cdot metric_{weight_i}}
 {sticky_{weight} + \sum\limits_{i=1}^n metric_{weight_i}}\]

	The application is scheduled to the cluster with the highest score. If several
clusters have the same score, one of them is chosen randomly.

Rescheduling (automatic migration) of Applications

	Applications that were already scheduled are put in the scheduler controller queue
again, to be rescheduled later on. Applications will go through the scheduling process
again after a certain interval, which is defined globally in the scheduler
configuration file, see Configuration (defaults to 60s).
This parameter is called reschedule_after. It allows an application to be
rescheduled to a more suitable cluster if a better one is found.

Stickiness

Stickiness is an extra metric for clusters to make the application “stick” to it by
increasing its score. Stickiness extra metric is defined by its value and
configurable weight. It represents the cost of migration of an Application, as it is
added to the score of the cluster on which the Application is currently running.

If the value is high, no migration will be performed, as the updated score of the current
cluster of the Application will be too high compared to the score of the other clusters.
If this value is too low, or if this mechanism was not present, any application could be
migrated from just the slightest change in the clusters score, which could be induced by
small changes in the metrics value. Thus the stickiness acts as a threshold: the changes
in the metrics values has to be higher than this value to trigger a rescheduling.

The stickiness weight is defined globally in the scheduler configuration file, see
Configuration (defaults to 0.1). If the application is
already scheduled to the passed cluster, a cluster stickiness is 1.0 multiplied by
the weight, otherwise 0.

Application Handler’s workflow:

The following figure gives an overview about the application handler of Krake scheduler.

[image: ../_images/scheduler_app_handler.png]

Special note on updates:

kube_controller_triggered:

This timestamp is used as a flag to trigger the Kubernetes Controller reconciliation.
Together with modified, it’s allowing correct synchronization between Scheduler and
Controller.

It is updated when the chosen Cluster has changed, or once after the update of an
Application triggered its rescheduling, even if this did not change the scheduled
cluster. The second case mostly occurs when a user updates it through the API.

This timestamp is used to force an Application that has been updated by a user to be
rescheduled before the changes are applied by the Kubernetes Controller. Without this
mechanism, the Application may be updated, but rescheduled somewhere else
afterwards.

The actual workflow is the same as the one explained in the schema above. However, there
is an additional interaction with the Kubernetes Controller:

	The user updates the Application my-app on the API:

my-app’s modified timestamp is higher than the
kube_controller_triggered timestamp;

	The Kubernetes Controller rejects the update on my-app in this case;

	The Scheduler accepts the update on my-app and chooses a cluster for the updated
my-app;

	as the cluster changed, the kube_controller_triggered timestamp is updated;

my-app’s modified timestamp is lower than the
kube_controller_triggered timestamp;

	the updated my-app is rejected by the Scheduler because of this comparison;

	the updated my-app is accepted by the Kubernetes Controller;

	the actual updates of the Application are performed by the Kubernetes Controller
if needed.

When the Application is rescheduled, if the selected cluster did not change, then the
kube_controller_triggered timestamp is updated only if the rescheduling was
triggered by an update of the Application. If the Application is rescheduled on the same
cluster automatically, then the timestamp is not updated. This prevents an update of
each Application on each automatic rescheduling, which would need to be handled by the
Kubernetes controller.

To sum up, the kube_controller_triggered timestamp represent the last time this
version of the Application was scheduled by the Scheduler.

scheduled:

The scheduled timestamp expresses the last time the scheduling decision changed for
the current resource. This timestamp does not correspond to the time where the
Application was deployed on the new cluster, just the time where the scheduler updated,
on the Application, the reference to the cluster where it should be deployed. It is
actually updated during a call from the scheduler to the API to change the binding of
the Application.

This timestamp is however not updated if an update of its Application did not lead to a
rescheduling, just a re-deployment.

Cluster handler

The Cluster handler is responsible for scheduling Kubernetes Clusters to the best
cloud backend (currently Krake supports OpenStack [https://www.openstack.org/] as a cloud backend).
The Cluster handler should process only Clusters that are not bound to
any Cloud, have non-deleted/non-failed state and
also the Clusters should not contain the kubeconfig file in their spec.
If the Cluster contains the kubeconfig file in its spec it is considered as an existing
cluster which was registered or created by Krake and therefore should be ignored by
the Cluster handler.

Scheduling of Clusters

	The Cluster handler evaluates if all the constraints of a Cluster
match the available cloud resources. The Cluster constraints define restrictions
for the scheduling algorithm. Currently, Cloud label and metrics
constraints are supported, see Constraints.

	If the selected Cloud resources contain metric definitions, the Cluster handler fetches
metric values from the corresponding metrics providers which should be defined in the
metric resource specifications,
see Metrics and Metrics Providers.

	Then, the score for each Cloud resource is computed. The Cloud
score is represented by a decimal number and is computed from metric values and
weights. If a given Cloud does not contain any metric definition, its score is
set to 0. Therefore, the Clouds with defined metrics are preferred:

	If there are no Clouds with metrics: the score is 0 for all Clouds.

	If there are Clouds with metrics: the Clouds without metrics are filtered out
and the scores of the ones with metrics are computed and compared.

This step is a ranking step.

	The score formula for a Cloud without metrics is defined as follows:

\[score = 0\]

	The score formula for a Cloud with n metrics is defined as follows:

\[score = \frac{\sum\limits_{i=1}^n metric_{value_i} \cdot metric_{weight_i}}
 {\sum\limits_{i=1}^n metric_{weight_i}}\]

	The Cluster is scheduled to the Cloud with the highest score. If
several Clouds have the same score, one of them is chosen randomly.

The following figure gives an overview about the Cluster handler of the Krake
scheduler.

[image: ../_images/scheduler_cluster_handler.png]

Magnum cluster handler

Warning

Due to stability and development issues on the side of Magnum, this feature isn’t actively developed anymore.

The Magnum cluster handler is responsible for scheduling Magnum clusters to the best
OpenStack project. The Magnum cluster handler should process only Magnum clusters that
are not bound to any OpenStack project and have non-deleted state.
Currently, the Magnum cluster handler considers every OpenStack project.

Scheduling of Magnum clusters

	The Magnum cluster handler evaluates if all the constraints of a Magnum cluster
match the available OpenStack project resources. The Magnum cluster constraints
define restrictions for the scheduling algorithm. Currently, only the OpenStack
project label constraints are supported, see Constraints. This
is a first filtering step.

	Selected OpenStack project resources could contain metric definitions. If the
OpenStack project contains metrics definition, the Magnum cluster handler fetches
metric values from the corresponding metrics providers which should be defined in the
metric resource specifications,
see Metrics and Metrics Providers.

	Then, the score for each OpenStack project resource is computed. The OpenStack project
score is represented by a decimal number and is computed from metric values and
weights. If a given OpenStack project does not contain metric definition, its score is
set to 0. Therefore, the OpenStack projects with defined metrics are preferred:

	If there are no project with metrics: the score is 0 for all projects;

	If there are projects with metrics: the projects without metrics are filtered out
and the scores of the ones with metrics are computed and compared.

This step is a ranking step.

	The score formula for a OpenStack project without metrics is defined as follows:

\[score = 0\]

	The score formula for a OpenStack project with n metrics is defined as follows:

\[score = \frac{\sum\limits_{i=1}^n metric_{value_i} \cdot metric_{weight_i}}
 {\sum\limits_{i=1}^n metric_{weight_i}}\]

	The Magnum cluster is scheduled to the OpenStack project with the highest score. If
several OpenStack projects have the same score, one of them is chosen randomly.

The following figure gives an overview about the Magnum cluster handler of Krake
scheduler. “OS project” means “OpenStack project resource” on the figure.

[image: ../_images/scheduler_magnum_cluster_handler.png]

Metrics and Metrics Providers

Overview

Warning

Due to stability and development issues on the side of Magnum, this feature isn’t actively developed anymore.

This section describes the metrics and their providers used in the Krake scheduling
algorithm.

The Krake scheduler filters backends based on defined backend metrics. The appropriate
metrics definition can prioritize the backend as a potential destination for a given
resource.

Krake provides two kinds of Metrics and MetricsProviders. GlobalMetric as well as
the GlobalMetricsProvider can be used throughout the entire Krake infrastructure by
all users, apps and clusters. In contrast, the Metric and MetricsProvider object
are bound to a namespace (hence why they’re called ‘namespaced’) and can only be used in
their respective context. In most of the documentation chapters, only GlobalMetrics
are talked about, but namespaced Metrics can also be used to follow these sections.

The metrics for the Kubernetes clusters, Magnum clusters and OpenStack projects
resources are defined by the -m or --metric option in the rok CLI, see
Rok documentation. Multiple metrics can be specified for
one resource with the following syntax: <name> <weight>.

Examples:

Kubernetes clusters:
rok kube cluster create <kubeconfig> --metric heat_demand_zone_1 0.45

Magnum clusters:
rok os cluster create <cluster_name> --metric heat_demand_zone_1 54

OpenStack projects:
rok os project create --user-id $OS_USER_ID --template $TEMPLATE_ID my-project --metric heat_demand_zone_1 3

By design, the general Krake metric resource (called GlobalMetric) is a core api
object, that contains its value normalization interval (min, max) and metrics provider
name, from which the metric current value should be requested. For the moment, Krake
supports the following types of metrics providers:

	Prometheus metrics provider, which can be used to fetch the current value of a
metric from a Prometheus [https://prometheus.io/] server;

	Kafka metrics provider, which can be used to fetch the current value of a metric
from a KSQL [https://github.com/confluentinc/ksql] database;

	Static metrics provider, which returns always the same value when a metric
is fetched. Different metrics can be configured to be given by a Static provider,
each with their respective value. The static provider was mostly designed for testing
purposes.

The metrics provider is defined as a core api resource (called
GlobalMetricsProvider) that stores the access information for the case of a
Prometheus metrics provider, or the metrics values for the case of a Static
metrics provider.

Example

api: core
kind: GlobalMetric
metadata:
 name: heat_demand_zone_1 # name as stored in Krake API (for management purposes)
spec:
 max: 5.0
 min: 0.0
 provider:
 metric: heat_demand_zone_1 # name on the provider
 name: <metrics provider name> # for instance prometheus or static_provider

Prometheus metrics provider
api: core
kind: GlobalMetricsProvider
metadata:
 name: prometheus_provider
spec:
 type: prometheus # specify here the type of metrics provider
 prometheus:
 url: http://localhost:9090

Kafka metrics provider
api: core
kind: GlobalMetricsProvider
metadata:
 name: kafka_provider
spec:
 type: kafka
 kafka:
 comparison_column: my_comp_col # Name of the column where the metrics names are stored
 table: my_table # Name of the table in which the metrics are stored
 url: http://localhost:8080
 value_column: my_value_col # Name of the column where the metrics values are stored

Static metrics provider
api: core
kind: GlobalMetricsProvider
metadata:
 name: static_provider
spec:
 type: static # specify here the type of metrics provider
 static:
 metrics:
 heat_demand_zone_1: 0.9
 electricity_cost_1: 0.1

In the example above, all metrics providers could be used to fetch the
heat_demand_zone_1 metric. By specifying a name in spec.provider.name of the
GlobalMetric resource, the value would be fetched from a different provider:

	prometheus_provider for the Prometheus provider;

	kafka_provider for the Kafka provider;

	static_provider for the Static provider (and the metric would always have the
value 0.9).

Note

A metric contains two “names”, but they can be different. metadata.name is the
name of the GlobalMetric resource as stored by the Krake API. In the database,
there can not be two resources of the same kind with the exact same name.

However (if we take for instance the case of Prometheus), two metrics, taken from
two different Prometheus servers could have the exact same name. This name is given
by spec.provider.metric.

So two Krake GlobalMetric`s resources could be called ``latency_from_A` and
latency_from_B in the database, but their name could
be latency in both Prometheus servers.

The Krake metrics and metrics providers definitions can also be added directly to the
Krake etcd database using the script krake_bootstrap_db, instead of using the API,
see Bootstrapping.

Constraints

This section describes the resource constraints definition used in the Krake scheduling
algorithm.

The Krake scheduler filters appropriate backends based on defined resource constraints.
A backend can be accepted by the scheduler as a potential destination for a given
resource only if it matches all defined resource constraints.

The Krake scheduler supports the following resource constraints:

	Label constraints

	Metric constraints

	Custom resources constraints

The Krake users are allowed to define these restrictions for the scheduling algorithm
of Krake.

The following sections describe the supported constraints of the Krake scheduler in
more detail.

Label constraints

Krake allows the user to define a label constraint and to restrict the deployment of
resources only to backends that matches all defined labels. Based on the resource,
Krake supports the following label constraints:

	The Cluster label constraints for the Application resource

	The Cloud label constraints for the Cluster resource

	The OpenStack project label constraints for the Magnum Cluster resource (Warning: Due to stability and development issues on the side of Magnum, this feature isn’t actively developed anymore.)

A simple language for expressing label constraints is used. The following operations
can be expressed:

	equality

	The value of a label must be equal to a specific value:

<label> is <value>
<label> = <value>
<label> == <value>

	non-equality

	The value of a label must not be equal to a specific value:

<label> is not <value>
<label> != <value>

	inclusion

	The value of a label must be inside a set of values:

<label> in (<value>, <value>, ...)

	exclusion

	The value of a label must not be inside a set of values:

<label> not in (<value>, <value>, ...)

The Cluster label constraints for the Application and Cluster resources
are defined by -L (or --cluster-label-constraint, --cloud-label-constraint) option in the
rok CLI, see Rok documentation. The constraints can be
specified multiple times with the syntax: <label> expression <value>.

Examples:

Application
rok kube app create <application_name> -f <path_to_manifest> -L 'location is DE'

Cluster:
rok kube cluster create <cluster_name> -f <path_to_tosca> -L 'location is DE' ...

Metric constraints

Krake allows the user to define a metric constraint and to restrict the deployment of
resources only to backends that matches the metric constraint. Based on the resource,
Krake supports the following metric constraints:

	The Cluster metric constraints for the Application resource

	The Cloud metric constraints for the Cluster resource

A simple language for expressing metric constraints is used. The following operations
can be expressed:

	equality

	The value of a label must be equal to a specific value:

<metric> is <value>
<metric> = <value>
<metric> == <value>

	non-equality

	The value of a metric must not be equal to a specific value:

<metric> is not <value>
<metric> != <value>

	greater than

	The value of a metric must be greater than a specific value:

<metric> greater than <value>
<metric> gt <value>
<metric> > <value>

	greater than or equal

	The value of a metric must be greater or equal than a specific value:

<metric> greater than or equal <value>
<metric> gte <value>
<metric> >= <value>
<metric> => <value>

	less than

	The value of a metric must be less than a specific value:

<metric> less than <value>
<metric> lt <value>
<metric> < <value>

	less than or equal

	The value of a metric must be less or equal than a specific value:

<metric> less than or equal <value>
<metric> lte <value>
<metric> <= <value>
<metric> =< <value>

The metric label constraints for the Application and Cluster resources are defined
by -M (or --cluster-metric-constraint, --cloud-metric-constraint) option in the rok CLI,
see Rok documentation. The constraints can be
specified multiple times with the syntax: <metric> expression <value>.

Examples:

Application
rok kube app create <application_name> -f <path_to_manifest> -M 'load = 5'

Cluster
rok kube cluster create <cluster_name> -f <path_to_tosca> -M 'load = 5' ...

Custom resources:

Krake allows the user to deploy an application that uses Kubernetes Custom Resources
(CR).

The user can define which CRs are available on his cluster. A CR is defined
by the Custom Resource Definition (CRD) and Krake uses this CRD name with the format
<plural>.<group> as a marker.

The supported CRD names are defined by -R or --custom-resource option in rok
CLI. See also Rok documentation.

Example:

rok kube cluster create <kubeconfig> --custom-resource <plural>.<group>

Applications that are based on a CR have to be explicitly labeled with a cluster
resource constraint. This is used in the Krake scheduling algorithm to select an
appropriate cluster where the CR is supported.

Cluster resource constraints are defined by a CRD name with the
format <plural>.<group> using -R or --cluster-resource-constraint option in
rok CLI. See also Rok documentation.

Example:

rok kube app create <application_name> -f <path_to_manifest> --cluster-resource-constraint <plural>.<group>

Application hooks

This section describes Application hooks which are registered and called by the
Hook Dispatcher in kubernetes application controller module.

Complete

The application complete hook gives the ability to signals job completion.

The Krake Kubernetes controller calls the application complete
hook before the deployment of the application on a Kubernetes
cluster. The hook is disabled by default. The user can enable this hook with the
--hook-complete argument in rok CLI.

See also Rok documentation.

The complete hook injects the KRAKE_COMPLETE_TOKEN environment variable, which stores the
Krake authentication token, and the KRAKE_COMPLETE_URL environment variable, which
stores the Krake complete hook URL for a given application.

By default, this URL is the Krake API endpoint as specified in the Kubernetes Controller
configuration. This endpoint may be only internal and thus not accessible by an
application that runs on a cluster. Thus, the external_endpoint parameter can be
leveraged. It specifies an endpoint of the Krake API, which can be accessed by the
application. The endpoint is only overridden if the external_endpoint
parameter is set.

Applications signal the job completion by calling the complete hook URL.
The token is used for authentication and should be sent in a PUT request body.

Shutdown

The application shutdown hook gives the ability to gracefully stop an application
before a migration or deletion happens. This in turn allows to save data or bring other
important processes to a safe conclusion.

The Krake Kubernetes controller calls the application shutdown
hook before the deployment of the application on a Kubernetes
cluster. The hook is disabled by default. The user can enable this hook with the
--hook-shutdown argument in rok CLI.

See also Rok documentation.

The shutdown hook injects the KRAKE_SHUTDOWN_TOKEN and the KRAKE_SHUTDOWN_URL
environment variables, which respectively store the Krake authentication token and the
Krake shutdown hook URL for a given application.

By default, this URL is the Krake API endpoint as specified in the Kubernetes Controller
configuration. This endpoint may be only internal and thus not accessible by an
application that runs on a cluster. Thus, the external_endpoint parameter can be
leveraged. It specifies an endpoint of the Krake API, which can be accessed by the
application. The endpoint is only overridden if the external_endpoint
parameter is set.

If the application should be migrated or deleted, Krake calls the shutdown services
URL, which is set via the manifest file of the application.
The integrated service gracefully shuts down the application, preferably via SIGTERM
call, but the exact implementation is up to the individual developer.
After the shutdown process is complete, the service sends a completion signal
to the shutdown hook endpoint of the specific application on the Krake API.
The previously set token is used for authentication and should be sent in a PUT
request body. This requirement prevents the malicious or unintentional deletion of an
application. The workflow of this process can be seen in the following figure:

[image: ../_images/shutdown_hook.png]

Shutdown hook workflow in Krake

The shutdown hook was developed especially to enable stateful applications. Since these
services generate data or are in specific states, it was difficult to migrate or even
delete these applications without disrupting their workflow. The shutdown hook enables
these normal Krake features for these applications by allowing saving of the current
state. But be aware, that Krake doesn’t implement a specific graceful shutdown for these
applications and merely gives them a possibility to be informed about the intentions of
Krake.

TLS

If TLS is enabled on the Krake API, both hooks need to be authenticated with
some certificates signed directly or indirectly by the Krake CA. For that purpose, the
hooks inject a Kubernetes ConfigMap for different files and mounts it in a volume:

	ca-bundle.pem

	It contains the CA certificate of Krake, and the hook certificate that was used
to sign the certificate specific to the Application.

	cert.pem

	The certificate signed by the hook. It is generated automatically for each
Application. Its CN is set to the hooks user defined in the hook configuration,
see Krake configuration.

	key.pem

	The key of the certificate signed by the hook. It is generated automatically
for each Application.

The certificate added are signed by a specific certificate, defined by the
intermediate_src field in the configuration
Kubernetes application controller. This certificate needs the
following:

	able to sign other certificates;

	hold the right alternative names to accept the Krake endpoint.

The ConfigMap is mounted by default at: /etc/krake_ca/cert.pem in the Kubernetes
Deployment resources of the Applications.

The name of the environment variables and the directory where the ConfigMap is
mounted are defined in the Kubernetes controller configuration file, see
Krake configuration.

Examples

cURL

Example using cURL:

$ curl -X PUT -d "{\"token\":\"$KRAKE_COMPLETE_TOKEN\"}" $KRAKE_COMPLETE_URL

If TLS is enabled on the Krake API
$ curl -X PUT -d "{\"token\":\"$KRAKE_COMPLETE_TOKEN\"}" $KRAKE_COMPLETE_URL \
 --cacert /etc/krake_cert/ca-bundle.pem \
 --cert /etc/krake_cert/cert.pem \
 --key /etc/krake_cert/key.pem

By running this command, the Krake API will compare the given token to the one in its
database, and if they match, will set the Application to be deleted.

The cURL above may not work with older versions of cURL. You should use versions >=
7.51, otherwise you would get:

curl: (35) gnutls_handshake() failed: The TLS connection was non-properly terminated.

Python requests

Example using Python’s requests module:

If TLS is not enabled:

import requests
import os

endpoint = os.getenv("KRAKE_COMPLETE_URL")
token = os.getenv("KRAKE_COMPLETE_TOKEN")

requests.put(endpoint, json={"token": token})

If TLS is enabled, using the default configuration for the certificate directory:

import requests
import os

ca_bundle = "/etc/krake_cert/ca-bundle.pem"
cert_path = "/etc/krake_cert/cert.pem"
key_path = "/etc/krake_cert/key.pem"
cert_and_key = (cert_path, key_path)
endpoint = os.getenv("KRAKE_COMPLETE_URL")
token = os.getenv("KRAKE_COMPLETE_TOKEN")

requests.put(endpoint, verify=ca_bundle, json={"token": token}, cert=cert_and_key)

Kubernetes Application Controller

Reconciliation loop

In the following section, we describe what happens in the Kubernetes Application
controller when receiving a resource, and highlight the role of the observer
schema.

In this example, the user provides:

	Two resources (one Song and one Artist) that should be created. This
is provided in spec.manifest.

	A custom observer schema for the Song. This is provided in
spec.observer_schema

The first resource (Song) illustrates the use of a custom observer schema
and demonstrates the behavior of list length control. The second resource
(Artist) highlights the generation of a default observer schema and the
special case of mangled resources.

[image: ../_images/kubernetes_controller_reconciliation_example.png]

Step 0 (Optional)

If the resource is defined by the TOSCA template file, an URL or a CSAR
archive URL, the controller translates the given TOSCA or CSAR file to the Kubernetes manifest
file if possible, see TOSCA.

The result of translation is stored in spec.manifest.

This step is performed by the ApplicationToscaTranslation hook.

Step 1

First, the controller generates the default observer schema for resources,
where none have been provided. In our example, a default observer schema is
created for the Artist, while the custom observer schema provided by the
user for the Song is used as-is.

The result is stored in status.mangled_observer_schema.

This step is performed by the generate_default_observer_schema function.

Step 2

In this step, the controller initializes - or updates if previously
initialized - the status.last_applied_manifest. This attribute represents
the desired state (i.e. which values should be set for which fields).

If empty (i.e. during the first reconciliation of the resource), it is
initialized as a copy of spec.manifest. The
status.last_applied_manifest might be augmented at a later step by
non-initialized observed fields (see Step 6). As a result, if this field has
already been initialized (i.e. during later reconciliation), this step
updates the observed fields present in spec.manifest.

This the role of the update_last_applied_manifest_from_spec function.

In the example above, looking at the Song resource:

	key1 is initialized in spec.manifest and is observed.

	key2 is initialized in spec.manifest but is not observed. Its
initial value is copied to the status.last_applied_manifest, so that
the Kubernetes resource can be created using this value. But as it’s not
observed, its value in status.last_applied_manifest will never be
updated (see Step 6).

	key3 is observed but is not set in spec.manifest. Its value in
status.last_applied_manifest is initialized as part of the Step 6 (see
below).

Step 3

When an application is mangled, for instance if the Complete Hook has been
enabled for the application, some fields or resources are added to
status.last_applied_manifest. They should also be observed, so there are
added to status.mangled_observer_schema.

This steps is performed in the mangle_app method of the Complete class.

In the example above, the Artist resource is mangled. The key
spec.nickname is added to both spec.last_applied_manifest and
mangled_observer_schema.

Step 4

The controller compares the desired state
(status.last_applied_manifest) and the current state (represented in
status.last_observed_manifest). It creates a set of new, updated
and deleted resource, to be used in the next step:
- new resources are present in the desired state but not in

the current state; they need to be created on the cluster.

	updated resources have a different definition in the desired and in
the current state; they need to be updated on the cluster.

	deleted resources are not in the desired state anymore, but are in
the current state; they need to be deleted from the cluster.

During the first reconciliation of the application, the current state is
empty. All resources present in the desired state needs to be created.

This steps occurs in ResourceDelta.calculate() function.

Note

In order to calculate the “diff” between the desired state and the current
state of a resource, the controller:
- compares the value of the observed fields only. By definition, the

controller should not act if a non-observed fields value changes.

	checks if the lengths of lists are valid using the list control
dictionary.

Step 5

The controller acts on the result of the comparison by either creating,
patching, or deleting resources on the cluster. In particular:

	A resource is created using the whole status.last_applied_manifest.
This ensures that all initialized fields (set by the user in
spec.manifest), are set on the selected cluster, regardless of whether
they are observed. In the example above, this is especially the case for
key2 in the Song.

	Only the observed fields of a resource are used in order to patch that
resource.

In other words, the non-observed initialized fields (i.e. set by the user in
spec.manifest, however not in spec.observer_schema):
- are used for the creation of the resource.
- are not used for patching the resource.

This reflects the fact that if a non-observed fields value changes on the
Kubernetes cluster, this update should not be reverted by the Kubernetes Application
controller, while providing the user with the ability to set the initial
value of a non-observed field.

Step 6

Using the Kubernetes response, the status.last_applied_manifest is
updated. It is augmented with observed fields which value was not yet known.

In the example above, this is the case of key3 in the Song. It is
observed (present in spec.observer_schema) but not initialized
(not present in spec.manifest). Its value in
status.last_applied_manifest couldn’t be initialized during Step 2. Its
value is initialized using the Kubernetes response.

This mechanism provides the user with the ability to request a specific field
to remain constant, while not providing an initial value for it. It uses the
value set initially by the Kubernetes cluster on resource creation.

This task is performed by the hook update_last_applied_manifest_from_resp.

Note

Only the observed which are not yet known are added to
status.last_applied_manifest.

In the unlikely event where a field, which value is already known, has a
different value in the Kubernetes response (for instance if key1
would have a different value in the Kubernetes response), this value is
not updated in status.last_applied_manifest. The user’s input
prevails in the definition of the desired state, represented by
status.last_applied_manifest.

Note

The rythms list possess two elements in the Kubernetes API response.
As only the first element is observed, the value of the second element is
not saved in status.last_applied_manifest.

Step 7

Similarly, the status.last_observed_manifest also needs to be updated in
order to reflect the current state. It holds all observed fields which
are present in the Kubernetes response.

This task is performed by the hook
update_last_observed_manifest_from_resp.

Kubernetes Application Observer

Krake employs self-healing processes on its resources while running. A reconciliation is
done on each resource whose status deviates from its specifications. This can happen if
a resource has been modified manually, attacked, or if any anomaly occurred on the
actual resource that the Krake resource describes.

Reconciliation

Overview

The reconciliation is the act of bringing the current state of a resource to its desired
state. During the course of its life, the real-life pendant of a Krake resource may be
updated, and thus differ from the desired state (user-defined). To correct this, Krake
performs a reconciliation, and the actual state is “replaced” by the desired state. The
Krake Controllers are responsible for actually doing the reconciliation over the
resources they manage.

The reconciliation is based on two fields of a resource data structure:

	spec

	The specifications of a resource are stored in this attribute. It corresponds to the
desired state of this resource.

It has the following properties:

	set and/or updated by the user;

	should not be modified by the Krake controllers, but nothing restricts it (should
be limited using RBAC, see Security principles).

	status

	The current status of the resource as seen in the real-world are stored in this
attribute.

It has the following properties:

	should not be modified by the user, but nothing restricts it (should be limited
using RBAC, see Security principles);

	set and/or updated by the Krake controllers.

Important

Resources must have a spec AND a status attribute to be reconciled.

Reconciliation loop

The actual reconciliation is done infinitely, during the so-called reconciliation loop.
This loop is not necessarily an in-code loop, and can be more of a conceptual loop
between different components.

This workflow in Krake for a specific resource is presented on the following figure:

[image: ../_images/reconciliation_loop.png]

Reconciliation loop in Krake

The workflow is as follows:

	The resource is created on the API;

	The actual resource is created by the Controller in the real-world;

	The Controller responsible for this resources watches, or observes its current
state in the real-world. This is the role of the Observer;

	This current state is compared to the status, stored internally on the Observer;

	If the actual state is the same as the status of the resource, as stored in the
Observer, nothing happens. This workflow is started again from step 3 onwards
after a defined time period;

	If the actual state is different from the status of the resource, it means that
the actual resource was modified in the real-world;

	The Observer notifies the API, by updating the status field of the resource;

	The Controller receives the up-to-date version of the resource, and performs the
reconciliation, by applying the desired state on the actual resource;

	The workflow starts again from step 3.

Warning

For the moment, Krake only implements reconciliation loop for the Krake
Application resources of the Kubernetes API.

Kubernetes Application Observer

The Krake applications of the Kubernetes API have a dedicated
KubernetesApplicationObserver. For each application which has some actual resources on a
cluster, an observer is created. This KubernetesApplicationObserver watches the status
of all Kubernetes resources present in the application specification.

For instance, the nginx application has a Kubernetes Deployment and a
Service. If a user changes the image version of the container in the Deployment
or a label in the Service, this will be detected by the Kubernetes application
Observer. It will update the status of the application and the Kubernetes Controller
will observe a deviation with the spec and update the actual Deployment and
Service accordingly.

The list of fields which are observed by the Kubernetes application observer can be
controlled by specifying a Custom Observer Schema.

This observer schema uses the two fields last_applied_manifest and
last_observed_manifest, both of which can be found in app.status.
last_applied_manifest contains the information about the latest applied data,
which the application should currently be running on. last_observed_manifest
on the other hand contains information about the latest observed manifest state of this
application. By comparing both datasets, the differences between the desired and
observed status can be determined and the corresponding parts can be created, updated or
deleted.

The actual workflow of the Kubernetes Application Observer is as follow:

[image: ../_images/kubernetes_observer.png]

Sequence diagram of the Kubernetes Application Observer lifecycle

Summary

Creation

After an Application’s resources are created, a Kubernetes Application Observer is
also created for this specific Application.

Update

Before the Kubernetes resources defined in an Application are updated, its
corresponding Kubernetes Application Observer is stopped. After the update has been
performed, a new observer is started, which observes the newest status of the
Application (the actual Kubernetes resources).

Deletion

Before the Kubernetes resources of an Application are deleted, its corresponding
KubernetesApplicationObserver is stopped.

Actions on the API side (summary)

	Action

	Observer stopped before

	Observer started after

	Create

	No

	Yes

	Update

	Yes

	Yes

	Delete

	Yes

	No

On status change

The KubernetesApplicationObserver periodically checks the current state of its
Application. The status is read and compared to the status field of the Application.

If a Kubernetes resource of the Application changed on its cluster, the
KubernetesApplicationObserver sends an update request to the API, to change its
status field. This field is updated to match what the Observer fetched from the
cluster.

Then the Kubernetes Controller starts processing the update normally: a discrepancy is
found between the desired state (spec) and the current one (status). Thus the
controller reacts and bring back the current state to match the desired one, by
reconciliation. As an update is performed, the observer is stopped before and started
after this reconciliation.

After the reconciliation, the status field of the Application follows now the
desired state. The Kubernetes Application Observer observes this state to check for any
divergence.

Warning

If another resource is added manually (not through Krake) to a cluster managed by
Krake, Krake will not be aware of it, and no management of this resource will be
performed: no migration, self-healing, updates, etc.

Kubernetes Cluster Controller

The Kubernetes Cluster Controller manages and monitors Kubernetes clusters registered in
Krake or created by Krake. To do this for each Kubernetes cluster registered or created by Krake, an observer is
created. This observer directly calls the Kubernetes API of the specific cluster and
checks on its current state. The Kubernetes cluster controller then updates the
internally stored state of the registered or created Kubernetes cluster according to the response
from the Kubernetes cluster observer.

The Kubernetes Cluster Controller is launched separately.

Note

Since this is a relatively new implementation, the Kubernetes
Cluster Controller will certainly be extended by
additional features and functionalities in the future.

For more information on what the Kubernetes Cluster Observer
does and what features it offers, see
Kubernetes Cluster Observer.

For more information about the actual Kubernetes cluster creation by Krake please see
Infrastructure Controller or visit related user story
Infrastructure providers.

Kubernetes Cluster Observer

Krake constantly observes the status of its registered or created clusters while running. For each
cluster a separate Kubernetes cluster observer is created. This cluster specific observer
calls the Kubernetes API of the real world Kubernetes Cluster periodically. The current
status of each cluster is saved in the database of Krake. If a status change of the real
world Kubernetes Cluster is detected, Krake updates the saved state of the registered
Kubernetes cluster which is stored in its database. Changes in the state of a cluster
may be related to Krake being able to connect to the real Kubernetes cluster or not, an
unhealthy real world Kubernetes cluster, or metrics providers failing.

Kubernetes Cluster Status Polling

Overview

The polling is the act of calling the Kubernetes API of the real world Kubernetes
cluster to get its state. During the course of its life, the real-life pendant of a
Krake resource may be updated, and thus differ from the desired state (user-defined). To
correct this, Krake performs a reconciliation, and the actual state is “replaced” by the
desired state. The Krake Controllers are responsible for actually doing the
reconciliation over the resources they manage.

Polling

The actual polling is done infinitely, during the so-called polling loop.

This workflow in Krake for a specific resource is presented on the following figure:

[image: ../_images/cluster_observer_loop.png]

KubernetesClusterObserver polling loop

The workflow is as follows:

	The actual real-world cluster is registered or created by Krake;

	The Kubernetes cluster controller watches, or observes the clusters current
status in the real-world. This is the role of the KubernetesClusterObserver.
This is done by polling the status with a call on the Kubernetes cluster API.

	This current state is compared to the status, stored internally on the Observer;

	If the actual state is the same as the status of the resource, as stored in the
Observer, nothing happens. This workflow is started again from step 3 onwards
after a defined time period;

	If the actual state is different from the status of the resource, it means that
the actual cluster was modified in the real-world;

	The Observer notifies the Krake API, by updating the status field of the cluster;

	The workflow starts again from step 3.

States

A Kubernetes cluster watched by it’s corresponding KubernetesClusterObserver can have
the following observer related states:

	PENDING

	CONNECTING

	ONLINE

	DEGRADED

	OFFLINE

	UNHEALTHY

	NOTREADY

	FAILING_METRICS

Note

Refer to the States for the infrastructure related cluster states.

	PENDING

	This state is initially set when a Kubernetes cluster is registered in Krake.

	CONNECTING

	It is set by the Kubernetes Cluster Observer if the previous state of a cluster was OFFLINE, but the real cluster is
available again. In this case, a reconnection is attempted with a temporary
CONNECTING state.

	ONLINE

	If the cluster is reachable in the real world, is in a healthy state and is ready,
the status of the cluster in Krake will be ONLINE.

	DEGRADED

	A cluster will be DEGRADED if the handling of the cluster was not successful, but
the number of retries is not yet exhausted. This is the intermediate state before
being OFFLINE (or back ONLINE). The behaviour is specified with the parameters backoff
(multiplier added to retry attempts, defaults to 1),
backoff_delay (number of seconds between retry attempts) and backoff_limit
(number of retries, defaults to -1(infinite)). So if not changed, the cluster will
remain in DEGRADED state until the handling was successful. Otherwise, if the
number of retries is exhausted, the cluster will transfer to OFFLINE.

	OFFLINE

	If the real world cluster cannot be reached by polling the Kubernetes cluster API,
the status of the cluster in Krake will be OFFLINE. This can happen due to several
reasons, e.g. the Kubernetes cluster itself is down, network connectivity issues or
incorrect configuration of the used kubeconfig file to register the cluster in
Krake.

	UNHEALTHY

	This state is set for clusters in Krake when the Kubernetes API call responds with
either PIDPressure, DiskPressure, or MemoryPressure.

	NOTREADY

	This status is displayed when there is an internal problem in the real Kubernetes
cluster. When this status is displayed, an investigation of the Kubernetes cluster
itself is highly recommended. The reasons for this status vary, for example, the
real Kubernetes cluster’s kubelet is not working properly or other services have
failed to start.

	FAILING_METRICS

	This status is set internally by Krake if a metrics provider is not reachable by
Krake and thus metrics cannot be passed correctly into Krake.

Node Health

The cluster observer collects health data of a kubernetes cluster and formats it.
Data is divided according to the nodes of the cluster and the different pressure types
PID, memory and disk. They represent the problems that a kubernetes node could
experience, either missing process ids due to too many process instances, memory overload
or non-available disk space.
These information can be found by calling:

rok kube cluster get X
+-----------------------+---------------------+
...	...
nodes	3/3
nodes_pid_pressure	0/3
nodes_memory_pressure	0/3
nodes_disk_pressure	0/3
...	...
+-----------------------+---------------------+

Nodes are shown according to their health, so 3/3 if all nodes are healthy, and the
pressure parameters only get filled, if there is a current problem with one (or more) of
the nodes.

Summary

Creation

After a Cluster resource was registered or successfully created, a KubernetesClusterObserver is also
created for this specific cluster.

Update

Before the Kubernetes cluster in Krake is updated, its
corresponding KubernetesClusterObserver is stopped. After the update has been performed,
a new observer is started, which observes the newest status of the cluster (the
actual Kubernetes cluster).

Deletion

Before the Kubernetes cluster is deleted, its corresponding
KubernetesClusterObserver is stopped.

Actions on the API side (summary)

	Action

	Observer stopped before

	Observer started after

	Create

	No

	Yes

	Update

	Yes

	Yes

	Delete

	Yes

	No

On status change

The KubernetesClusterObserver periodically checks the current state of its cluster.
The status is read and compared to the status field of the cluster.

If a Kubernetes cluster changed, the KubernetesClusterObserver sends an update request
to the API, to change its status field. This field is updated to match what the
Observer fetched from the cluster.

Then the Kubernetes Cluster Controller starts processing the update normally.

Warning

Currently only Kubernetes clusters which have been registered in Krake or
created by Krake can be observed.

Infrastructure Controller

This part of the documentation presents the Infrastructure Controller control plane component, and
how the life-cycle management of real-world Kubernetes clusters is handled.

The Infrastructure Controller should process Clusters that are bound (scheduled) to
any Cloud or GlobalCloud resource. It should also process Clusters that were deleted and contain
an Infrastructure Controller specific deletion finalizer: infrastructure_resources_deletion.

Note

Refer to the Cluster handler for useful information about cluster scheduling process.

Bound GlobalCloud or Cloud resources correspond to an IaaS cloud deployment
(e.g. OpenStack, AWS, etc.) that will be managed by the infrastructure provider backend.
Krake currently supports only OpenStack [https://www.openstack.org/] as a GlobalCloud or Cloud backend.

The GlobalCloud or Cloud resource should contain a reference to the GlobalInfrastructureProvider or
InfrastructureProvider resource that corresponds to an infrastructure provider backend, that is able
to deploy infrastructures (e.g. Virtual machines, Kubernetes clusters, etc.) on IaaS cloud deployments.
Krake currently supports only IM [https://github.com/grycap/im] (Infrastructure Manager) as an infrastructure provider backend.

Note

The global resource (e.g. GlobalInfrastructureProvider, GlobalCloud) is a
non-namespaced resource that could be used by any (even namespaced) Krake
resource. For example, the GlobalCloud resource could be used by any Cluster
which needs to be scheduled to some cloud.

Reconciliation loop

In the following section, we describe what happens in the Infrastructure Controller
when receiving a Cluster resource.

[image: ../_images/infrastructure_controller_reconciliation_example.png]

Step 1

Infrastructure Controller handles Cluster resources that have been deleted and contain
the infrastructure_resources_deletion (1).
If the above is true, the controller requests the cloud’s infrastructure provider for the deletion of the actual
cluster counterparts (1a). The controller waits in an infinite loop for the actual cluster
deletion (1b). Finally, the controller removes the finalizer from the Cluster resource (1c).
This allows the garbage collector controller to remove the Cluster resource from the Krake DB.

Step 2

The Infrastructure Controller handles Cluster resources that are bound (scheduled) to
any Cloud or GlobalCloud resource (2). The Cloud or GlobalCloud resource contains cloud API
endpoints and access credentials as well as a reference to the infrastructure provider
resource through which Krake can manage actual Kubernetes clusters on the bounded cloud.

Step 3

If the Cluster is bound (scheduled) to some cloud, the controller recursively looks for
all the changes between the desired state (which is represented by the cluster.spec.tosca
field) and the current state (which is stored in the cluster.status.last_applied_tosca
field) (3).

Step 4

If there is a difference between the desired and the current state, the controller checks
the resource field cluster.status.running_on (4).

If it is empty, the resource is considered new, and the controller requests the cloud’s
infrastructure provider for the creation of the actual cluster counterparts (4a).
The TOSCA template stored in cluster.spec.tosca represents the desired state and it is applied here.
After a successful request for creation, the cluster.status.last_applied_tosca field is updated
with the copy of the cluster.spec.tosca field as well as the cluster.status.running_on is
updated with the copy of the cluster.status.scheduled_to field (scheduled_to field contains
the bound cloud resource reference).

If the cluster.status.running_on field is not empty, the controller requests the cloud’s
infrastructure provider for the reconciliation (update) of the actual cluster counterparts (4b).
The TOSCA template stored in cluster.spec.tosca represents the desired state and it is applied here.
After a successful request for reconciliation, the cluster.status.last_applied_tosca field is updated
with the copy of the cluster.spec.tosca field.

Then, the controller waits for the cluster is being successfully configured in the infinite loop (7).

Step 5

If the desired and the current state are in sync, the controller checks whether the Cluster resource state
is FAILING_RECONCILIATION (5). If so, the controller requests the cloud’s infrastructure provider
for the reconfiguration of the actual cluster counterparts (5a). This is a “special” call that may or may not be
required in case of infrastructure provider failures (e.g. restart). It depends on the underlying infrastructure
provider implementation which action should be performed under the hood of the abstract infrastructure
controller function reconfigure.

Then, the controller waits for the cluster is being successfully configured in the infinite loop (7).

Step 6

The controller finishes the reconciliation if the Cluster resource state is ONLINE or CONNECTING (6). If it is not the case,
the controller waits for the cluster is being successfully configured in the infinite loop (7).

Step 7

The controller waits in an infinite loop for the actual cluster creation/reconciliation/(re)configuration (7).
When the actual cluster is fully configured, the controller updates the Cluster state to
CONNECTING and also saves its kubeconfig manifest to the cluster.spec.kubeconfig field.
Finally, the controller finishes the reconciliation.

Note

Once the Cluster is configured, has CONNECTING state, and contains kubeconfig manifest, the
Kubernetes Cluster Controller takes over the Cluster and
Kubernetes Cluster Observer observes its actual status.

States

A Kubernetes Cluster resource managed by the Infrastructure Controller can have
the following infrastructure related states:

	PENDING

	CONNECTING

	CREATING

	RECONCILING

	DELETING

	FAILING_RECONCILIATION

	FAILED

Note

Refer to the States for the observer related cluster states.

	PENDING

	This state is initially set when a Kubernetes cluster resource is created in Krake.

	CONNECTING

	It is set when the actual Kubernetes cluster has been successfully reconciled.

	CREATING

	It is set when the actual Kubernetes cluster is going to be created.

	RECONCILING

	It is set when the actual Kubernetes cluster is going to be updated.

	DELETING

	It is set when the actual Kubernetes cluster is going to be deleted.

	FAILING_RECONCILIATION

	It is set when the reconciliation process of the actual Kubernetes cluster failed.

	FAILED

	It is set on the global Infrastructure Controller level when an exceptions is raised during the reconciliation process.

Note

Since this is a relatively new implementation, the Infrastructure Controller
will certainly be extended by additional features and functionalities
in the future, e.g. Infrastructure Observer.

Garbage Collection

This part of the documentation presents the Garbage Collector component, and
how the deletion of resources that others depends on is handled.

Dependency mechanism

[image: ../_images/dependency_mechanism.png]

Dependency relationships in Krake with examples.

In Krake, any resource can depend on any other. In this case, we say the
dependent depends on the dependency. For instance, a Kubernetes
Application depends on a Cluster. We also say that the Cluster owns the
Application. The Cluster is one of the owners of the Application in this case.

Every resource with metadata holds a list of its owners. However, no resource
holds the list of its owned resources. This is similar to the principle of
relational database for instance, with the foreign key mechanism.

In the preceding diagram, a my-app Application is owned by a cluster (see
its list of owners) itself belonging to a Magnum cluster. The latter is
finally owned by an OpenStack project. The project has no dependency, thus its
owner list is empty.

Overview

The Garbage Collector is a Controller of Krake and is, as such, to be started
independently from the other components of Krake.

“Marked as deleted” vs “to delete” vs “deleted”

The resources processed during garbage collection have three different states.
They use the "cascade_deletion" finalizer.

	“Marked as deleted”

	A resource is marked as deleted by the API, when the “delete” action is
called on this resource. It means two things for the resource object:

	the deleted timestamp of the metadata is set to the current time;

	the "cascade_deletion" finalizer is added to its list of finalizer.

A resource marked for deletion enters then the garbage collection process.

Caution

This state is irreversible. A resource that enters this state will be
processed by the garbage collector, only to be deleted in the end of
garbage collection process.

	“To delete”

	A resource is said to be in the “to delete” state if two conditions are met
:

	its deleted timestamp is set;

	it has no finalizer.

Such a resource can still be transferred by the components. If a resource
in this state is received by the API on update, it is deleted.

	“Deleted”

	A deleted resource is completely removed from the database. A last
“DELETED” event can be watched on the API when the actual deletion occurs
to act on the deletion but the resource itself must be considered erased,
and not managed by the API anymore.

Role of the Garbage Collector

The role of the Garbage Collector is to handle resources marked as deleted by
the API, but not yet deleted.

When a resource is received, the garbage collector has to:

	update its dependency graph (see
Dependency graph);

	get the resources that directly depend on it;

	call the API with the “delete” action to let it mark the dependents as
deleted;

	if a resource has no dependent, remove the "cascade_deletion" finalizer
from it, and call the API to update the resource. The resource enters the “to
delete” state.

So the role of the Garbage Collector is mostly to get the dependents of a
resource, and update them to mark them as deleted. This information is taken
from the dependency graph present on the garbage collector, see the
Dependency graph section.

Role of the API

For the deletion of resources, the garbage collector works tightly with the
API, as the garbage collector has no direct access to any resource on the
database.

The API is then responsible for:

	actually marking the requested resources as deleted;

	completely deleting a resource from the database during an update, if the
resource is in a “to delete” state.

So the API is the one that actually modifies and process the stored resources.

Garbage collection workflow

[image: ../_images/garbage_collection_workflow.png]

Garbage collection workflow, and communication between the garbage
collector and the API

The exact workflow of a resource that the user wants to delete is presented on
the previous diagram. Let us take for example an Application A, with a
cluster C as single owner.

	A and C were created beforehand, thus they are already present in
the dependency graph of the garbage collector;

	the user requests the deletion of the Cluster C, for instance with the
Rok utility or using curl;

	the request is received by the API. The API marks the cluster C as
deleted, and an UPDATE event is triggered;

	the garbage collector receives the event. It accepts to handle the cluster,
as it is marked for deletion;

	the list of dependents of C is fetched from the dependency graph stored
on the garbage collector. The garbage collector issues for each of them a
“delete” call to the API. In our case, the Application A is the only
dependent of C;

	the API receives the call and marks A as deleted. A is updated, and
an UPDATE event is triggered;

	the garbage collector receives the event, and accepts to handle A;

	A has no dependent, so its "cascade_deletion" finalizer is removed.
An “update” request is sent to the API with the new A;

	the API receives the “update” request, with A being in the “to delete”
state. A is deleted from the database. A DELETED event is triggered;

	the garbage collector receives the event. A is removed from the
dependency graph. The dependencies of A are put in the worker queue of
the garbage collector to be handled. The owners are collected from the
dependency graph. In our case, C is added to the worker queue;

	C is handled by the garbage collector a second time. It has no dependent
this time, as A has been deleted and removed from the dependency graph.
Thus, the garbage collector removes the "cascade_deletion" finalizer and
issues an “update” call to the API for C;

	the API receives the “update” request, with C being in the “to delete”
state. C is deleted from the database. A DELETED event is triggered.
C had no dependency, so the garbage collector does not take any action.

Dependency graph

Description and goal

[image: ../_images/dependency_graph_example.png]

Comparison example of the dependencies, as represented in the API and on
the dependency graph.

The dependency graph is an acyclic directed graph stored on the garbage
collector as “cache”. Its goal is to store the dependency relationships of all
resources managed by the API. The graph is updated when starting the garbage
collector, while listing resources, or on events triggered by the API. It is
only stored in memory, and is re-created each time the garbage collector is
started.

The dependency graph allows the garbage collector to access the dependents of
any resource. Otherwise, to get the dependents of a resource, the garbage
collector would need to request all resources on the database, and check which
one of them have the resource to delete as owner. This would mean of course
that all resources of the database would be looped through. This is definitely
not optimal and is avoided with the dependency graph.

On the nodes, the graph stores the krake.data.core.ResourceRef object
corresponding to a resource. The edges are directed link from a ResourceRef
object, to the dependencies of the original object.

krake.data.core.ResourceRef objects are used because they can be keys
in dictionaries, whereas normal resources cannot. The reference to the complete
resources is still stored in the graph.

Graph workflow

[image: ../_images/dependency_graph_workflow.png]

Dependency graph workflow on the garbage collector

Five actions can be performed on the dependency graph: adding, updating or
removing a resource, get the dependents of a resource, or get its dependencies.

	Adding a resource:

	Action performed when the garbage collector lists the resources on startup,
or when an “ADDED” event is triggered. The resource is added to the graph
as node, along with its dependency relations as edges;

	Updating a resource:

	Action performed when an “UPDATED” event is triggered. If the resource
dependency relations were modified, the graph edges are modified. The
node corresponding to the resource is modified.

	Removing a resource:

	Action performed when a “DELETED” event is triggered. The resource’s
corresponding node is removed from the graph, along with the edges bound
to it.

	Get the dependents of a resource:

	Action performed by the garbage collector, to know which resource to mark
for deletion, without having to reach the API. The nodes on the edges of
the resource are listed and returned.

	Get the dependencies of a resource:

	Action performed by the garbage collector, to put the owners of a resource
in the worker queue. The owners stored on the resource are returned.

API Generation

This part of the documentation describes the API generator utility.

Role

The API generator was developed to automatically create the code for:

	the Krake API;

	the client for the Krake API;

	the unit tests for the Krake API;

	the unit tests for the client of the Krake API;

	the API definitions, which are the bases for the generation of the elements above.

Note

Other cases will be added, as the generator was built to be modular.

The Krake API is separated into the different APIs that are managed: core,
kubernetes, openstack, and infrastructure. Each one of them handles
the classic CRUD operations on the different resources managed by the APIs.
Having all their code written by hand would not really follow the DRY principle.
Previously, the handlers and the client methods were generated dynamically when
starting the API. This lead to the code of the API and the client being not very
flexible, but mostly, being harder to debug.

As a compromise, the API generator was introduced. It generates the code for any
resource of any API in a deterministic way. The code for the API, the client and their
respective unit tests are thus more or less “harcoded”, as they are not generated on the
fly. This has several advantages:

	the code can be easily read, understood, and is accessible easily for debuggers and
linters;

	the generation can be nicely integrated with versioning. For instance, when generating
new resources or when updating the template of the handlers, the changes can be
propagated easily. One only needs to rerun the generator and check the differences.

The API generator should be leveraged in the following cases:

	a new operation on an existing resource is inserted (like the binding for the
Application resource, or the update of a subresource);

	a new resource is added to an API. All operations to manage it should be handled;

	a whole new API is added. All resources should be managed as well;

Usage

The API generator is a Python module not integrated into the Krake main code. It is
present in the Krake repository on api_generator/.

Requirements

To install the required packages in your local environment, you can use:

pip install "krake/[api_generator]"

Krake needs to be installed on your local environment as well to be able to use the
generator. The previous command also installs Krake.

Commands

The base command for the generator is the following:

python -m api_generator <command> <parameters>

The <command> part sets the type of generator which will be used, e.g. the Krake API
code, or unit tests for the client. The <parameters> are the specific arguments for
the chosen generator.

Warning

You need to be in the Krake root directory to use the command.

The command above will display the generated result. To store it into a file, simply
redirect the result:

python -m api_generator <command> <parameters> > <generated_file>

Templating

The generated content is based on Jinja templates stored in api_generator/templates,
but the path can be overwritten, see Common arguments.
Modifying the templates will modify the generated code, and additional templates can be
added for additional operations, unit tests, handlers, etc.

Generated elements

API definitions

The API definitions describe the different operations which can be executed on a type of
resource in a specific API. For instance, it would express that the resource Bar of
API foo can be read or listed, but not created, updated or deleted. Additional
operations can also be added, for example for bindings, hooks, etc.

To create these definitions automatically, the generation is based on classes defined in
the Krake data module. The module inside krake.data is imported by the generator,
which goes through the module, and filters the classes which will be persistently stored
in the database. These classes are considered as being handled by the Krake API, and the
operations will only be generated for them.

For each resource (the class handled), the following elements are generated:

	a Resource class;

	the singular and plural word for the resource;

	the scope of the resource (namespaced or not);

	basic CRUD operations, plus List and ListAll (from all namespaces);

	subresource classes inside the Resource class for each subresource of the data
class (specified by the "subresource" metadata of a field being set to True.);

	for each subresource, the Update operation is generated.

For each operation, the generated definition also describes:

	the HTTP method for the operation;

	the URL path for the operation’s endpoint;

	the name of the data class to use for the body of the request to the endpoint;

	the name of the data class that will be used for the body of the response of the Krake
API.

For example:

python -m api_generator api_definition krake.data.kubernetes

will generate an API definition file which describes all the resources in the
kubernetes API of Krake. Among many other elements, a Status subresource is
added for he Application resource.

Regarding the scope, each resource can be either namespaced or non-namespaced.
To handle non-namespaced resources, no namespaced should be provided for the API
endpoint when calling them. Further, the List operation can list all of the elements
of the resource, and there is no ListAll operation to list all resources of all
namespaces (because the instance of the resources are not separated by namespaces).

To specify the scope, use the --scopes <krake_class_name>=<scope> argument, once for
each resource. For example, for the foo API, with resource Bar namespaced and
Baz non-namespaced, the command should be:

python -m api_generator api_definition krake.data.foo --scopes Baz=NONE

After the generation, operations or the attributes of the operation can be changed to
restrict or add new operations, change the body of the request or the response, add
other subresources, etc.

The existing definitions are stored in the api_generator/apidefs directory.

API/client code generation and their unit tests

The generation for the following elements all follow the same procedure:

	code for the Krake API;

	code for the client of the Krake API;

	the unit tests for the Krake API;

	the unit tests for the client of the Krake API.

The four generators leverage the API definitions as input. By
giving the generator the path to a definition, it will be able to import it and get
information from the resources, subresources and their respective operations. This will,
in turn, be leveraged for the generation of the code.

python -m api_generator <command> api_generator.apidefs.foo

where the parameter (here api_generator.apidefs.foo) is the module path to the API
definition used as input, and <command> can be:

api_client:

The generated output will be code to communicate with the API. For each API, a
client class is created, which has a method for each defined operation. These
methods take usually a resource as parameter and maybe the name and namespace of a
resource. It returns usually the body of the response of the Krake API.

api_server:

The generated output will be handlers for the Krake API, to be executed when a
request is received. For each operation of each resource, a handler is generated to
process the request and prepare the body of the response sent to the client.

test_client:

The generated output will be unit tests. They verify the behavior of the client
methods generated by the api_client command. For each method of the client,
several unit tests can be added because of the different behaviors it can have.

test_server:

The generated output will be unit tests. They verify the behavior of the handlers
generated by the api_server command. For each handlers of the API, several unit
tests can be added because of the different behaviors it can have.

All these generators share the following common arguments:

	--operation

	--resources

They can be used to limit respectively the operations and/or the resource that will be
handled by the generator for the final output. Can be repeated once for each operation
for which the output will be displayed. If one of the option is used, it will only
display the mentioned operation or resource. Not using one of them will result in all
operations or resources being outputted.

Common arguments

These arguments are common to some generators:

--no-black:

to disable the usage of black [https://github.com/psf/black] on the output of the generator before returning it.

--templates-dir

to overwrite the templates used for the generation of the code or definitions.

TOSCA

This section describes TOSCA integration to Krake.

Introduction

TOSCA [https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca] is an OASIS standard language to describe a topology of cloud-based web services,
their components, relationships, and the processes that manage them.

TOSCA uses the concept of service templates to describe services.
TOSCA further provides a system of types to describe the possible building blocks for
constructing service templates and relationship types to describe possible kinds of relations.
It is possible to create custom TOSCA types for building custom TOSCA templates.

Krake allows end-users to orchestrate Kubernetes applications with TOSCA. It is required
to use custom TOSCA templates for them. Krake supports Cloud Service
Archive (CSAR [https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx]) files as well. CSAR [https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx] is a container file using the ZIP file format [https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html#_Toc528072959],
that includes all artifacts required to manage the lifecycle of the corresponding
cloud application using the TOSCA language.

Note

The TOSCA technical committee has decided that any profile (template base)
development should be left to the community. It means, that there are not any
“de facto standard” on how to describe e.g. Kubernetes applications with TOSCA.
Each orchestrator that supports TOSCA is its own product with its own design paradigms
and may have different assumptions and requirements for modeling applications.

TOSCA Template

Krake is able to manage Kubernetes applications that are described by the TOSCA YAML custom
template file. Kubernetes application should be described by
TOSCA-Simple-Profile-YAML [https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/] v1.0 or v1.2 as Krake only supports those versions.

Krake supports Cloud Service Archives (CSAR [https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx]) as well. The CSAR should contain
TOSCA-Simple-Profile-YAML [https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/] v1.0 or v1.2 and should be in defined format [https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html#_Toc528072959].

Note

Krake uses the tosca-parser [https://github.com/openstack/tosca-parser] library as its underlying TOSCA parser and validator.
Currently, tosca-parser [https://github.com/openstack/tosca-parser] supports the TOSCA-Simple-Profile-YAML [https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/] v1.0 or v1.2,
which reflects what is supported by Krake.

Note

The Krake API could process TOSCA templates in two formats. It can receive
the TOSCA template as serialized JSON or the API could receive a URL that points
to some remote location, that provides a TOSCA template.
In the case of providing a URL, the underlying tosca-parser [https://github.com/openstack/tosca-parser] library is able
to (synchronously) download the TOSCA template from the defined URL
and then parse and validate it.

Another prerequisite (besides the TOSCA version) is a TOSCA profile (custom type).
Krake supports and can manage only Kubernetes application that is described by the
tosca.nodes.indigo.KubernetesObject custom type.

The tosca.nodes.indigo.KubernetesObject custom type has been defined by the
Grycap [https://github.com/grycap] research group. It could be imported as an external document using the imports
directive in the template or it can be directly declared as a custom
data type within the data_types template section.

For import use the following reference to Grycap’s custom types [https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_types.yaml]:

imports:
- ec3_custom_types: https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_types.yaml

For direct definition use the following (minimal) data type:

data_types:
 tosca.nodes.indigo.KubernetesObject:
 derived_from: tosca.nodes.Root
 properties:
 spec:
 type: string
 description: The YAML description of the K8s object
 required: true

The spec of tosca.nodes.indigo.KubernetesObject custom type should contain
Kubernetes manifest as a string. It is possible to applied subset of supported TOSCA functions [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html]
like:

	get_property

	get_input

The spec of the tosca.nodes.indigo.KubernetesObject custom type should contain a Kubernetes
manifest as a string. It is possible to apply a subset of supported TOSCA functions [http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html] like:

	get_property

	get_input

	concat

Then, the example of TOSCA template for a single Kubernetes Pod could be designed as follows:

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
 - ec3_custom_types: https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_types.yaml

description: TOSCA template for launching an example Pod by Krake

topology_template:
 inputs:
 container_port:
 type: integer
 description: Container port
 default: 80
 node_templates:
 example-pod:
 type: tosca.nodes.indigo.KubernetesObject
 properties:
 spec:
 concat:
 - |-
 apiVersion: v1
 kind: Pod
 metadata:
 name: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort:
 - get_input: container_port

Let’s save the definition above to the tosca-example.yaml file.

If you want to expose a created TOSCA template in your localhost, you can use a simple python HTTP server as follows:

TOSCA template will then be exposed on URL: `http://127.0.0.1:8000/tosca-example.yaml`
python3 -m http.server 8000

Cloud Service Archive

CSAR [https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx] should be in a defined format [https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html#_Toc528072959]. The specification allows to create CSAR with or without
the TOSCA.meta file.
The TOSCA.meta file structure follows the exact same syntax as defined in the TOSCA 1.0 specification.
It is required to store this file in the TOSCA-Metadata directory. It is also required to
include the Entry-Definitions keyword pointing to a valid TOSCA definitions YAML file,
which should be used by a TOSCA orchestrator as an entrypoint for parsing the contents of the overall CSAR file
(the previously created tosca-example.yaml file will be used in this example).

Note

The Krake API can process CSAR files only, if they’re defined as **URL**s.
It means, that CSAR should be created and then exposed in some remote location.
Then, the underlying tosca-parser [https://github.com/openstack/tosca-parser] library is able to (synchronously)
download the CSAR archive from the defined URL and afterwards parse and validate it.

Create TOSCA-Metadata directory
mkdir TOSCA-Metadata
Create and fill TOSCA.meta file
echo "TOSCA-Meta-File-Version: 1.0" >> TOSCA-Metadata/TOSCA.meta
echo "CSAR-Version: 1.1" >> TOSCA-Metadata/TOSCA.meta
echo "Created-By: Krake" >> TOSCA-Metadata/TOSCA.meta
echo "Entry-Definitions: tosca-example.yaml" >> TOSCA-Metadata/TOSCA.meta
Create CSAR
zip example.csar -r TOSCA-Metadata/ tosca-example.yaml

Expose the created CSAR by simple HTTP python server
CSAR will be then exposed on URL: `http://127.0.0.1:8000/example.csar`
Expose the created CSAR file with a simple HTTP python server
CSAR will then be exposed on URL: `http://127.0.0.1:8000/example.csar`
python3 -m http.server 8000

TOSCA/CSAR Workflow

The TOSCA template or CSAR archive should be composed on the client side. Then the client sends the request
for the creation or update of an application together with the TOSCA template (YAML file or URL) or CSAR URL.
The Krake API validates the TOSCA template or CSAR file suffixes depending on the used URL.
When the TOSCA template is defined with a YAML file, parsing and validation are performed by Krake API
(using the tosca-parser [https://github.com/openstack/tosca-parser]).
After validation, the life cycle of the application is the same as a regular one (defined by Kubernetes
manifest) except for the translation of the TOSCA template or CSAR archive into a Kubernetes manifest
inside of the Kubernetes Application Controller.
The controller is responsible for the translation of TOSCA/CSAR to Kubernetes manifests.
During this process, the application will in the TRANSLATING state.

The workflow of this process can be seen in the following figure:

[image: ../_images/tosca_workflow.png]

TOSCA/CSAR workflow in Krake

Examples

Prerequisites

The Krake repository contains a bunch of useful examples. Clone it first with the following commands:

git clone https://gitlab.com/rak-n-rok/krake.git
cd krake

TOSCA template examples are located in the rak/functionals directory. View these TOSCA templates for example:

$ cat rak/functionals/echo-demo-tosca.yaml
$ cat rak/functionals/echo-demo-update-tosca.yaml

If you want to expose a created TOSCA template via some URL, you can use a simple python HTTP server as follows:

cd rak/functionals/
Expose the TOSCA template examples with a simple HTTP python server
TOSCA template examples will then be exposed on URLs:
- `http://127.0.0.1:8000/echo-demo-tosca.yaml`
- `http://127.0.0.1:8000/echo-demo-update-tosca.yaml`
python3 -m http.server 8000

If you are interested in CSAR, use the pre-defined TOSCA.meta file and create and expose CSAR archive as follows:

cd rak/functionals/
zip echo-demo.csar -r TOSCA-Metadata/ echo-demo-tosca.yaml
Expose the created CSAR by simple HTTP python server
CSAR will be then exposed on URL: `http://127.0.0.1:8000/example.csar`
python3 -m http.server 8000

Rok

A TOSCA template YAML file should be applied the same way as a Kubernetes manifest file
using the rok CLI, see Rok documentation.

	Create an application described by a TOSCA template YAML file:

rok kube app create --file rak/functionals/echo-demo-tosca.yaml echo-demo

	Update an application described by a TOSCA template:

rok kube app update --file rak/functionals/echo-demo-update-tosca.yaml echo-demo

A TOSCA template URL or CSAR archive URL should be defined after the optional –url argument
using the rok CLI, see Rok documentation.

	Create an application described by a TOSCA template URL:

rok kube app create --url http://127.0.0.1:8000/echo-demo-tosca.yaml echo-demo

	Update an application described by a TOSCA template URL:

rok kube app update --url http://127.0.0.1:8000/echo-demo-update-tosca.yaml echo-demo

	Alternatively, create an application described by a CSAR URL:

rok kube app create --url http://127.0.0.1:8000/example.csar echo-demo

Tip

Krake allows the creation of an application using e.g. a plain Kubernetes manifest
and then updating it with a TOSCA or even CSAR file. The same works
vice-versa. It means, that the application could be created and then updated by
any supported format (Kubernetes manifest, TOSCA, CSAR).

Krake Reference

This is the code reference for the Krake project.

Module hierarchy

This section presents the modules and sub-modules of the Krake project present
in the krake/ directory.

The tests for Krake are added in the krake/tests/ directory. The
pytest module is used to launch all unit tests.

	krake

	The krake module itself only contains a few utility functions, as well
as functions for reading and validating the environment variables and the
configuration provided. However, this module contains several sub-modules
presented in the following.

	krake.api

	This module contains the logic needed to start the API as a an aiohttp
application. It exchanges objects with the various clients defined in
krake.client. These objects are the ones defined in krake.data.

	krake.client

	This module contains all the necessary logic for any kind of client to
communicate with the API described in the krake.api module.

	krake.controller

	This module contains the base controller and the definition for several
controllers. Each one of these controllers is a separate process, that
communicates with the API or the database. For this, the controllers use
elements provided by the krake.client module.

All new controller should be added in this module.

	krake.controller.kubernetes.application

	This sub-module contains the definition of the controller specialized
for the Kubernetes application handling.

	krake.controller.kubernetes.cluster

	This sub-module contains the definition of the controller specialized
for the Kubernetes cluster handling.

	krake.controller.scheduler

	This sub-module defines the Scheduler controller, responsible for binding
the Krake applications and magnum clusters to the specific backends.

	krake.controller.gc

	This sub-module defines the Garbage Collector controller, responsible for
handling the dependencies during the deletion of a resource. It marks as
deleted all dependents of a resource marked as deleted, thus triggering their
deletion.

	krake.controller.magnum

	This sub-module defines the Magnum controller, responsible for managing
Magnum cluster resources and creating their respective Kubernetes cluster.

	krake.data

	This module defines all elements used by the API and the controllers. It
contains the definition of all these objects, and the logic to allow them
to be serialized and deserialized.

Krake

	
class krake.ConfigurationOptionMapper(config_cls, option_fields_mapping=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handle the creation of command line options for a specific Configuration
class. For each attribute of the Configuration, and recursively, an option will
be added to set it from the command line. A mapping between the option name and
the hierarchical list of fields is created. Nested options keep the upper layers
as prefixes, which are separated by a “-” character.

For instance, the following classes:

class SpaceShipConfiguration(Serializable):
 name: str
 propulsion: PropulsionConfiguration

class PropulsionConfiguration(Serializable):
 power: int
 engine_type: TypeConfiguration

class TypeConfiguration(Serializable):
 name: str

Will be transformed into the following options:

--name str
--propulsion-power int
--propulsion-engine-type-name: str

And the option-fields mapping will be:

{
 "name": [Field(name="name", ...)],
 "propulsion-power": [
 Field(name="propulsion", ...), Field(name="power", ...)
],
 "propulsion-engine-type-name": [
 Field(name="propulsion", ...),
 Field(name="engine_type", ...),
 Field(name="name", ...),
],
}

Then, from parsed arguments, the default value of an element of configuration
are replaced by the elements set by the user through the parser, using this
mapping.

The mapping of the option name to the list of fields is necessary here
because a configuration element called "lorem-ipsum" with a
"dolor-sit-amet" element will be transformed into a
"--lorem-ipsum-dolor-sit-amet" option. It will then be parsed as
"lorem_ipsum_dolor_sit_amet". This last string, if split with "_", could
be separated into "lorem" and "ipsum_dolor_sit_amet", or
"lorem_ipsum_dolor" and "sit_amet". Hence the idea of the mapping to get
the right separation.

	Parameters

	
	config_cls (type [https://docs.python.org/3/library/functions.html#type]) – the configuration class which will be used as a model to
generate the options.

	option_fields_mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – a mapping of the option names, with
POSIX convention (with “-” character”), to the list of fields:
<option_name_with_dash>: <hierarchical_list_of_fields>
This argument can be used to set the mapping directly, instead of creating
it from a Configuration class.

	
add_arguments(parser)

	Using the configuration class given, create automatically and recursively
command-line options to set the different attributes of the configuration.
Nested options keep the upper layers as prefixes, which are separated by a “-”
character.

Generate the mapping between the option name and the hierarchy of the
attributes of the Configuration.

	Parameters

	parser (argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – the parser to which the new command-line
options will be added.

	
merge(config, args)

	Merge the configuration taken from file and the one from the command line
arguments. The arguments have priority and replace the values read from
configuration.

	Parameters

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the configuration to replace the values from.

	args (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the values read by the command line parser.

	Returns

	
	the result of the merge of the CLI

	arguments into the configuration, as serializable object.

	Return type

	krake.data.serializable.Serializable

	
krake.load_yaml_config(filepath)

	Load Krake base configuration settings from YAML file

	Parameters

	filepath (os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike], optional) – Path to YAML configuration file

	Raises

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If no configuration file can be found

	Returns

	Krake YAML file configuration

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
krake.search_config(filename)

	Search configuration file in known directories.

The filename is searched in the following directories in given order:

	Current working directory

	/etc/krake

	Returns

	Path to configuration file

	Return type

	os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike]

	Raises

	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError] – If the configuration cannot be found in any of the
search locations.

	
krake.setup_logging(config_log)

	Setups Krake logging based on logging configuration and
global config level for each logger without log-level configuration

	Parameters

	config_log (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictschema logging configuration
(see logging.config.dictConfig() [https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig])

API Server

This module provides the HTTP RESTful API of the Krake application. It is
implemented as an aiohttp [https://docs.aiohttp.org/en/stable/structures.html#module-aiohttp] application.

This module defines the bootstrap function for creating the aiohttp server
instance serving Krake’s HTTP API.

Krake serves multiple APIs for different technologies, e.g. the core
functionality like roles and role bindings are served by the
krake.api.core API where as the Kubernetes API is provided by
krake.api.kubernetes.

Example

The API server can be run as follows:

from aiohttp import web
from krake.api.app import create_app

config = ...
app = create_app(config)
web.run_app(app)

	
krake.api.app.cors_setup(app)

	Set the default CORS (Cross-Origin Resource Sharing) rules for all routes of the
given web application.

	Parameters

	app (web.Application) – Web application

	
krake.api.app.create_app(config)

	Create aiohttp application instance providing the Krake HTTP API

	Parameters

	config (krake.data.config.ApiConfiguration) – Application configuration object

	Returns

	Krake HTTP API

	Return type

	aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application]

	
krake.api.app.db_session(app, host, port)

	Async generator creating a database krake.api.database.Session that can
be used by other components (middleware, route handlers) or by the requests
handlers. The database session is available under the db key of the application.

This function should be used as cleanup context (see
aiohttp.web.Application.cleanup_ctx [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application.cleanup_ctx]).

	Parameters

	app (aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application]) – Web application

	
krake.api.app.http_session(app, ssl_context=None)

	Async generator creating an aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession] HTTP(S) session
that can be used by other components (middleware, route handlers). The HTTP(S)
client session is available under the http key of the application.

This function should be used as cleanup context (see
aiohttp.web.Application.cleanup_ctx [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application.cleanup_ctx]).

	Parameters

	app (aiohttp.web.Application [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application]) – Web application

	
krake.api.app.load_authentication(config)

	Create the authentication middleware middlewares.authentication().

The authenticators are loaded from the “authentication” configuration key.
If the server is configured with TLS, client certificates are also added
as authentication (auth.client_certificate_authentication())
strategy.

	Parameters

	config (krake.data.config.ApiConfiguration) – Application configuration object

	Returns

	aiohttp middleware handling request authentication

	
krake.api.app.load_authorizer(config)

	Load authorization function from configuration.

	Parameters

	config (krake.data.config.ApiConfiguration) – Application configuration object

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If an unknown authorization strategy is configured

	Returns

	Coroutine function for authorizing resource requests

Authentication and Authorization

Authentication and Authorization module for Krake.

Access to the Krake API is controlled by two distinct mechanisms performed
after each other:

	Authentication

	verifies the identity of a user (Who is requesting?)

	Authorization

	decides if the user has permission to access a resource

Authentication

Authentication is performed for every request. The
krake.api.middlewares.authentication() middleware factory is used for
this purpose. The concrete authentication implementation will be derived from
the configuration.

Anonymous authentication
authentication:
 kind: static
 name: system

Keystone authentication
authentication:
 kind: keystone
 endpoint: http://localhost:5000/v3

An authenticator is a simple asynchronous function:

Currently, there are two authentication implementations available:

	Static authentication (static_authentication())

	Keystone authentication (keystone_authentication())

Authorization

Authorization is established with the help of the protected() decorator
function. The decorator annotates a given aiohttp request handler with the
required authorization information (see AuthorizationRequest).

An authorizer is a simple asynchronous function:

The concrete authentication implementation will be derived from the
configuration and is stored under the authorizer key of the application.

Authorization mode
#
- RBAC (Role-based access control)
- always-allow (Allow all requests. No authorization is performed.)
- always-deny (Deny all requests. Only for testing purposes.)
#
authorization: always-allow

Currently, there are three authorization implementations available:

	Always allow (always_allow())

	Always deny (always_deny())

	Role-based access control / RBAC (rbac())

	
class krake.api.auth.AuthorizationRequest

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Authorization request handled by authorizers.

	
api

	Name of the API group

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
namespace

	If the resource is namespaced, the requested
namespace

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
resource

	Name of the resource

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
verb

	Verb that should be performed on the
resource.

	Type

	krake.data.core.Verb

	
api

	Alias for field number 0

	
namespace

	Alias for field number 1

	
resource

	Alias for field number 2

	
verb

	Alias for field number 3

	
krake.api.auth.always_allow(request, auth_request)

	Authorizer allowing every request.

	Parameters

	
	request (aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request]) – Incoming HTTP request

	auth_request (AuthorizationRequest) – Authorization request associated with
the incoming HTTP request.

	
krake.api.auth.always_deny(request, auth_request)

	Authorizer denying every request.

	Parameters

	
	request (aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request]) – Incoming HTTP request

	auth_request (AuthorizationRequest) – Authorization request associated with
the incoming HTTP request.

	Raises

	aiohttp.web.HTTPForbidden – Always raised

	
krake.api.auth.client_certificate_authentication()

	Authenticator factory for authenticating requests with client
certificates.

The client certificate is loaded from the peercert attribute of the
underlying TCP transport. The common name of the client certificate is
used as username

	Returns

	Authenticator using client certificate information for
authentication.

	Return type

	callable

	
krake.api.auth.keycloak_authentication(endpoint, realm)

	Authenticator factory for Keycloak authentication.

The token in the Authorization header of a request sent to Krake will be sent as
access token to the OpenID user information endpoint. The returned user name from
Keycloak is used as authenticated user name.

The authenticator requires an HTTP client session that is loaded from the
http key of the application.

	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – Keycloak HTTP endpoint.

	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – Keycloak realm to use at this endpoint.

	Returns

	Authenticator for the given Keystone endpoint.

	Return type

	callable

	
krake.api.auth.keystone_authentication(endpoint)

	Authenticator factory for OpenStack Keystone authentication.

The token in the Authorization header of a request will be used as
X-Auth-Token header for a request to the Keystone token endpoint.
The returned user name from Keystone is used as authenticated user name.

The authenticator requires an HTTP client session that is loaded from the
http key of the application.

	Parameters

	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – Keystone HTTP endpoint

	Returns

	Authenticator for the given Keystone endpoint.

	Return type

	callable

	
krake.api.auth.protected(api, resource, verb)

	Decorator function for aiohttp request handlers performing authorization.

The returned decorator can be used to wrap a given aiohttp handler and
call the current authorizer of the application (loaded from the
authorizer key of the application). If the authorizer does not raise
any exception the request is authorized and the wrapped request handler is
called.

Example

from krake.api.auth import protected

@routes.get("/book/{name}")
@protected(api="v1", resource="book", verb="get", namespaced=False)
async def get_resource(request):
 assert "user" in request

	Parameters

	
	api (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the API group

	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the resource

	verb (str [https://docs.python.org/3/library/stdtypes.html#str], krake.data.core.Verb) – Verb that should be performed

	Returns

	Decorator that can be used to wrap a given aiohttp request
handler.

	Return type

	callable

	
krake.api.auth.rbac(request, auth_request)

	Role-based access control authorizer.

The roles of a user are loaded from the database. It checks if any role
allows the verb on the resource in the namespace. Roles are only
permissive. There are no denial rules.

	Parameters

	
	request (aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request]) – Incoming HTTP request

	auth_request (AuthorizationRequest) – Authorization request associated with
the incoming HTTP request.

	Returns

	The role allowing access.

	Return type

	krake.data.core.Role

	Raises

	aiohttp.web.HTTPForbidden – If no role allows access.

	
krake.api.auth.static_authentication(name)

	Authenticator factory for authenticating every request with the given
name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Static user name that should be used for every request.

	Returns

	Authenticator returning the given name for every request.

	Return type

	callable

Database Abstraction

Database abstraction for etcd [https://etcd.io/]. Key idea of the abstraction is to provide
an declarative way of defining persistent data structures (aka. “models”)
together with a simple interface for loading and storing these data
structures.

This goal is achieved by leveraging the JSON-serializable data classes based
on krake.data.serializable and combining them with a simple database
session.

Example

from krake.api.database import Session
from krake.data import Key
from krake.data.serializable import Serializable

class Book(Serializable):
 isbn: int
 title: str

 __etcd_key__ = Key("/books/{isbn}")

async with Session(host="localhost") as session:
 book = await session.get(Book, isbn=9783453146976)

	
exception krake.api.database.DatabaseError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
class krake.api.database.EtcdClient(host='127.0.0.1', port=2379, protocol='http', cert=(), verify=None, timeout=None, headers=None, user_agent=None, pool_size=30, username=None, password=None, token=None, server_version='3.3.0', cluster_version='3.3.0')

	Bases: etcd3.aio_client.AioClient

Async etcd v3 client based on etcd3.aio_client.AioClient with
some minor patches.

	
class krake.api.database.Event

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Events that are yielded by Session.watch()

	
event

	Type of event that occurred (PUT or DELETE)

	Type

	EventType

	
value

	Deserialized object. None if the event is of
kind DELETE.

	Type

	object [https://docs.python.org/3/library/functions.html#object], None [https://docs.python.org/3/library/constants.html#None]

	
rev

	Revision of the object

	Type

	Revision

	
event

	Alias for field number 0

	
rev

	Alias for field number 2

	
value

	Alias for field number 1

	
class krake.api.database.EventType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Different types of events that can occur during
Session.watch().

	
class krake.api.database.Revision

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

Etcd revision of a loaded key-value pair.

Etcd stores all keys in a flat binary key space. The key space has a
lexically sorted index on byte string keys. The key space maintains
multiple revisions of the same key. Each atomic mutative operation (e.g.,
a transaction operation may contain multiple operations) creates a new
revision on the key space.

Every Session.get() request returns also the revision besides the
model.

	
key

	Key in the etcd database

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
created

	is the revision of last creation on this key.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
modified

	is the revision of last modification on this key.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
version

	is the version of the key. A deletion resets the
version to zero and any modification of the key increases its
version.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
created

	Alias for field number 1

	
key

	Alias for field number 0

	
modified

	Alias for field number 2

	
version

	Alias for field number 3

	
class krake.api.database.Session(host, port=2379, loop=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Database session for managing
krake.data.serializable.Serializable objects in an etcd database.

The serializable objects need have one additional attribute:

	__etcd_key__

	A krake.data.Key template for the associated etcd key of a
managed object.

Objects managed by a session have an attached etcd Revision when
loaded from the database. This revision can be read by revision().
If an object has no revision attached, it is considered fresh or new.
It is expected that the associated key of a new object does not already
exist in the database.

The session is an asynchronous context manager. It takes of care of
opening and closing an HTTP session to the gRPC JSON gateway of the etcd
server.

The etcd v3 protocol is documented by its protobuf definitions [https://etcd.io/docs/v3.3.12/dev-guide/api_reference_v3/].

Example

async with Session(host="localhost") as session:
 pass

	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – Hostname of the etcd server

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – Client port of the etcd server

	loop (async.AbstractEventLoop, optional) – asyncio event loop that
should be used

	
all(cls, **kwargs)

	Fetch all instances of a given type

The instances can be filtered by partial identities. Every identity can
be specified as keyword argument and only instances with this
identity attribute are returned. The only requirement for a filtered
identity attribute is that all preceding identity attributes must
also be given.

Example

class Book(Serializable):
 isbn: int
 title: str
 author: str

 __metadata__ = {
 "key": Key("/books/{author}/{isbn}")
 }

await db.all(Book)

Get all books by Adam Douglas
await db.all(Book, author="Adam Douglas")

This will raise a TypeError because the preceding "name"
attribute is not given.
await db.all(Book, isbn=42)

	Parameters

	
	cls (type [https://docs.python.org/3/library/functions.html#type]) – Serializable class that should be loaded

	**kwargs – Parameters for the etcd key

	Yields

	(object, Revision) – Tuple of deserialized model and revision

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If an identity attribute is given without all preceding
identity attributes.

	
client

	Lazy loading of the etcd client. It is only created when the first request is
performed.

	Returns

	the client to connect to the database.

	Return type

	EtcdClient

	
delete(instance)

	Delete a given instance from etcd.

A transaction is used ensuring the etcd key was not modified
in-between. If the transaction is successful, the revision of the
instance will be updated to the revision returned by the transaction
response.

	Parameters

	instance (object [https://docs.python.org/3/library/functions.html#object]) – Serializable object that should be deleted

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the passed object has no revision attached.

	TransactionError – If the key was modified in between

	
get(cls, **kwargs)

	Fetch an serializable object from the etcd server specified by its
identity attribute.

	
cls

	Serializable class that should be loaded

	Type

	type [https://docs.python.org/3/library/functions.html#type]

	
**kwargs

	Parameters for the etcd key

	Returns

	Deserialized model with attached revision. If
the key was not found in etcd, None is returned.

	Return type

	object [https://docs.python.org/3/library/functions.html#object], None [https://docs.python.org/3/library/constants.html#None]

	
load_instance(cls, kv)

	Load an instance and its revision by an etcd key-value pair

	Parameters

	
	cls (type [https://docs.python.org/3/library/functions.html#type]) – Serializable type

	kv – etcd key-value pair

	Returns

	Deserialized model with attached revision

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
put(instance)

	Store new revision of a serializable object on etcd server.

If the instances does not have an attached Revision (see
revision()), it is assumed that a key-value pair should be
created. Otherwise, it is assumed that the key-value pair is
updated.

A transaction ensures that

	the etcd key was not modified in-between if the key is updated

	the key does not already exists if a key is added

If the transaction is successful, the revision of the instance will
updated to the revision returned by the transaction response.

	Parameters

	
	instance (krake.data.serializable.Serializable) – Serializable object that

	be stored. (should) –

	Raise:

	
	TransactionError: If the key was modified in between or already

	exists

	
watch(cls, **kwargs)

	Watch the namespace of a given serializable type and yield
every change in this namespace.

Internally, it uses the etcd watch API. The created future can be
used to signal successful creation of an etcd watcher.

	Parameters

	
	cls (type [https://docs.python.org/3/library/functions.html#type]) – Serializable type of which the namespace should be
watched

	**kwargs – Parameters for the etcd key

	Yields

	Event – Every change in the namespace will generate an event

	
exception krake.api.database.TransactionError

	Bases: krake.api.database.DatabaseError

	
class krake.api.database.Watcher(session, model, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Async context manager for database watching requests.

This context manager is used internally by Session.watch(). It
returns a async generator on entering. It is ensured that the watch is
created on entering. This means inside the context, it can be assumed that
the watch exists.

	Parameters

	
	session (Session) – Database session doing the watch request

	model (type [https://docs.python.org/3/library/functions.html#type]) – Class that is loaded from database

	**kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments that are used to generate the
etcd key prefix (Key.prefix())

	
watch()

	Async generator for watching database prefix.

	Yields

	Event –

	Database event holding the loaded model (see model

	argument) and database revision.

	
krake.api.database.revision(instance)

	Returns the etcd Revision of an object used with a
Session. If the object is currently unattached – which means it
was not retrieved from the database with Session.get() – this function
returns None [https://docs.python.org/3/library/constants.html#None].

	Parameters

	instance (object [https://docs.python.org/3/library/functions.html#object]) – Object used with Session.

	Returns

	The current etcd revision of the instance.

	Return type

	Revision, None [https://docs.python.org/3/library/constants.html#None]

Helpers

Simple helper functions that are used by the HTTP endpoints.

	
class krake.api.helpers.Heartbeat(response, interval=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Asynchronous context manager for heartbeating long running HTTP responses.

Writes newlines to the response body in a given heartbeat interval. If
interval is set to 0, no heartbeat will be sent.

	Parameters

	
	response (aiohttp.web.StreamResponse [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse]) – Prepared HTTP response with
chunked encoding

	interval (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], optional) – Heartbeat interval in seconds.
Default: 10 seconds.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the response is not prepared or not chunk encoded

Example

import asyncio
from aiohttp import web

from krake.helpers import Heartbeat

async def handler(request):
 # Prepare streaming response
 resp = web.StreamResponse()
 resp.enable_chunked_encoding()
 await resp.prepare(request)

 async with Heartbeat(resp):
 while True:
 await resp.write(b"spam\n")
 await asyncio.sleep(120)

	
heartbeat()

	Indefinitely write a new line to the response body and sleep for
interval.

	
class krake.api.helpers.HttpProblem(**kwargs)

	Bases: krake.data.serializable.Serializable

Store the reasons for failures of the HTTP layers for the API.

The reason is stored as an RFC 7807 Problem. It is a way to define
a uniform, machine-readable details of errors in a HTTP response.
See https://tools.ietf.org/html/rfc7807 for details.

	
type

	A URI reference that identifies the
problem type. It should point the Krake API users to the
concrete part of the Krake documentation where the problem
type is explained in detail. Defaults to about:blank.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
title

	A short, human-readable summary of
the problem type

	Type

	HttpProblemTitle

	
status

	The HTTP status code

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
detail

	A human-readable explanation of the problem

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
instance

	A URI reference that identifies the specific
occurrence of the problem

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
classmethod remove_none_values(data, **kwargs)

	Remove attributes if value equals None

	
__post_init__()

	HACK:
marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema] allows registering hooks like post_dump.
This is not allowed in krake Serializable, therefore within
marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema] allows registering hooks like post_dump.
This is not allowed in krake Serializable, therefore
the __post_init__ method is registered directly within the hook.

	
remove_none_values(data, **kwargs)

	Remove attributes if value equals None

	
exception krake.api.helpers.HttpProblemError(exc: aiohttp.web_exceptions.HTTPException, problem: krake.api.helpers.HttpProblem = HttpProblem(type='about:blank', title=None, status=None, detail=None, instance=None), **kwargs)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Custom exception raised if failures on the HTTP layers occur

	
class krake.api.helpers.HttpProblemTitle

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Store the title of an RFC 7807 problem.

The RFC 7807 Problem title is a short, human-readable summary of
the problem type. The name defines the title itself.
The value is used as part of the URI reference that identifies
the problem type, see middlewares.problem_response()
for details.

	
class krake.api.helpers.ListQuery

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple mixin class for operation template classes.

Defines default operation.query attribute for list and list
all operations.

	
class krake.api.helpers.QueryFlag(**metadata)

	Bases: marshmallow.fields.Field [https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field]

Field used for boolean query parameters.

If the query parameter exists the field is deserialized to True [https://docs.python.org/3/library/constants.html#True]
regardless of the value. The field is marked as load_only.

	
deserialize(value, attr=None, data=None, **kwargs)

	Deserialize value.

	Parameters

	
	value – The value to deserialize.

	attr – The attribute/key in data to deserialize.

	data – The raw input data passed to Schema.load.

	kwargs – Field-specific keyword arguments.

	Raises

	ValidationError – If an invalid value is passed or if a required value
is missing.

	
krake.api.helpers.blocking()

	Decorator function to enable function blocking. This allows only a return of the
response if the requested action is completed (eg. deletion of a resource).
The function logic is therefore executed after its decorated counterpart.

	Returns

	JSON style response coming from the handler

	Return type

	Response

	
krake.api.helpers.load(argname, cls)

	Decorator function for loading database models from URL parameters.

The wrapper loads the name parameter from the requests match_info
attribute. If the match_info contains a namespace parameter, it
is used as etcd key parameter as well.

Example

from aiohttp import web

from krake.data import serialize
from krake.data.core import Role

@load("role", Role)
def get_role(request, role):
 return json_response(serialize(role))

	Parameters

	
	argname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the keyword argument that will be passed to the
wrapped function.

	cls (type [https://docs.python.org/3/library/functions.html#type]) – Database model class that should be loaded

	Returns

	Decorator for aiohttp request handlers

	Return type

	callable

	
krake.api.helpers.make_create_request_schema(cls)

	Create a marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema] excluding subresources and read-only.

	Parameters

	cls (type [https://docs.python.org/3/library/functions.html#type]) – Data class with Schema attribute

	Returns

	Schema instance with excluded subresources

	Return type

	marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema]

	
krake.api.helpers.session(request)

	Load the database session for a given aiohttp request

Internally, it just returns the value that was given as cleanup context by
func:krake.api.app.db_session.

	Parameters

	request (aiohttp.web.Request [https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request]) – HTTP request

	Returns

	Database session for the given request

	Return type

	krake.database.Session

	
krake.api.helpers.use_schema(argname, schema)

	Decorator function for loading a marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema] from the
request body.

If the request body is not valid JSON
aiohttp.web.HTTPUnsupportedMediaType will be raised in the
wrapper.

	Parameters

	
	argname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the keyword argument that will be passed to the
wrapped function.

	schema (marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema]) – Schema that should used to deserialize
the request body

	Returns

	Decorator for aiohttp request handlers

	Return type

	callable

Middlewares

This modules defines aiohttp middlewares for the Krake HTTP API

	
krake.api.middlewares.authentication(authenticators, allow_anonymous)

	Middleware factory authenticating every request.

The concrete implementation is delegated to the passed asynchronous
authenticator function (see krake.api.auth for details). This
function returns the username for an incoming request. If the request is
unauthenticated – meaning the authenticator returns None –
system:anonymous is used as username.

The username is registered under the user key of the incoming request.

Anonymous requests can be allowed. If no authenticator authenticates the
incoming request, “system:anonymous” is assigned as user for the request.
This behavior can be disabled. In that case “401 Unauthorized” is raised
if an request is not authenticated by any authenticator.

	Parameters

	
	authenticators (List[callable]) – List if asynchronous function
returning the username for a given request.

	allow_anonymous (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, anonymous (unauthenticated) requests
are allowed.

	Returns

	aiohttp middleware loading a username for every incoming HTTP request.

	
krake.api.middlewares.error_log()

	Middleware factory for logging exceptions in request handlers

	Returns

	aiohttp middleware catching every exception logging it to the passed
logger and reraising the exception.

	
krake.api.middlewares.problem_response(problem_base_url=None)

	Middleware factory for HTTP exceptions in request handlers

	Parameters

	problem_base_url (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Base URL of the Krake documentation where
HTTP problems are explained in detail.

	Returns

	aiohttp middleware catching HttpProblemError or HTTPException based exception
transforming the excpetion text to the helpers.HttpProblem
(RFC 7807 Problem representation of failure) and reraising the exception.

	
krake.api.middlewares.retry_transaction(retry=1)

	Middleware factory for transaction error handling.

If a database.TransactionError occurs, the request handler is retried for
the specified number of times. If the transaction error persists, a 409 Conflict
HTTP exception is raised.

	Parameters

	retry (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of retries if a transaction error occurs.

	Returns

	aiohttp middleware handling transaction errors.

	Return type

	coroutine

Client

This module provides a simple Python client to the Krake HTTP API. It
leverages the same data models as the API server from krake.data.

	
class krake.client.ApiClient(client)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for all clients of a specific Krake API.

	
client

	the lower-level client to use to create the actual
connections.

	Type

	krake.client.Client

	
plurals

	contains the name of the resources handled by the
current API and their corresponding names in plural:
“<name_in_singular>”: “<name_in_plural>”

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]

	Parameters

	client (krake.client.Client) – client to use for the HTTP communications.

	
class krake.client.Client(url, loop=None, ssl_context=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple async Python client for the Krake HTTP API.

The specific APIs are implemented in separate classes. Each API object
requires an Client instance to interface the HTTP REST API.

The client implements the asynchronous context manager protocol used to
handle opening and closing the internal HTTP session.

Example

from krake.client import Client
from krake.client.core import CoreApi

async with Client("http://localhost:8080") as client:
 core_api = CoreApi(client)
 role = await core_api.read_role(name="reader")

	
close()

	Close the internal HTTP session and remove all resource attributes.

	
open()

	Open the internal HTTP session and initializes all resource
attributes.

	
class krake.client.Watcher(session, url, model)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Async context manager used by watch_*() methods of ClientApi.

The context manager returns the async generator of resources. On entering
it is ensured that the watch is created. This means inside the context a
watch is already established.

	Parameters

	
	session (aiohttp.ClientSession [https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession]) – HTTP session that is used to access
the REST API.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL for the watch request

	model (type [https://docs.python.org/3/library/functions.html#type]) – Type that will be used to deserialize
krake.data.core.WatchEvent.object

	
watch()

	Async generator yielding watch events

	Yields

	krake.data.core.WatchEvent –

	Watch events where object is

	already deserialized correctly according to the API
definition (see model argument)

Client APIs

	
class krake.client.core.CoreApi(client)

	Bases: krake.client.ApiClient

Core API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
 core_api = CoreApi(client)

	Parameters

	client (krake.client.Client) – API client for accessing the Krake HTTP API

	
create_global_metric(body)

	Create the specified GlobalMetric.

	Parameters

	body (GlobalMetric) – Body of the HTTP request.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetric

	
create_global_metrics_provider(body)

	Create the specified GlobalMetricsProvider.

	Parameters

	body (GlobalMetricsProvider) – Body of the HTTP request.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricsProvider

	
create_metric(body, namespace)

	Create the specified Metric.

	Parameters

	
	body (Metric) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the Metric

	Returns

	Body of the HTTP response.

	Return type

	Metric

	
create_metrics_provider(body, namespace)

	Create the specified MetricsProvider.

	Parameters

	
	body (MetricsProvider) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – Namespace of the MetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	MetricsProvider

	
create_role(body)

	Create the specified Role.

	Parameters

	body (Role) – Body of the HTTP request.

	Returns

	Body of the HTTP response.

	Return type

	Role

	
create_role_binding(body)

	Create the specified RoleBinding.

	Parameters

	body (RoleBinding) – Body of the HTTP request.

	Returns

	Body of the HTTP response.

	Return type

	RoleBinding

	
delete_global_metric(name)

	Delete the specified GlobalMetric.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalMetric.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetric

	
delete_global_metrics_provider(name)

	Delete the specified GlobalMetricsProvider.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalMetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricsProvider

	
delete_metric(name, namespace)

	Delete the specified Metric.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Metric.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the Metric

	Returns

	Body of the HTTP response.

	Return type

	Metric

	
delete_metrics_provider(name, namespace)

	Delete the specified MetricsProvider.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MetricsProvider.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the MetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	MetricsProvider

	
delete_role(name)

	Delete the specified Role.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Role.

	Returns

	Body of the HTTP response.

	Return type

	Role

	
delete_role_binding(name)

	Delete the specified RoleBinding.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the RoleBinding.

	Returns

	Body of the HTTP response.

	Return type

	RoleBinding

	
list_global_metrics()

	List the GlobalMetrics in the namespace.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricList

	
list_global_metrics_providers()

	List the GlobalMetricsProviders in the namespace.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricsProviderList

	
list_metrics(namespace=None)

	List the Metrics in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the Metric

	Returns

	Body of the HTTP response.

	Return type

	MetricList

	
list_metrics_providers(namespace=None)

	List the MetricsProviders in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the MetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	MetricsProviderList

	
list_role_bindings()

	List the RoleBindings in the namespace.

	Returns

	Body of the HTTP response.

	Return type

	RoleBindingList

	
list_roles()

	List the Roles in the namespace.

	Returns

	Body of the HTTP response.

	Return type

	RoleList

	
read_global_metric(name)

	Read the specified GlobalMetric.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalMetric.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetric

	
read_global_metrics_provider(name)

	Reads the specified GlobalMetricsProvider.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalMetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricsProvider

	
read_metric(name, namespace)

	Read the specified Metric.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Metric.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the Metric

	Returns

	Body of the HTTP response.

	Return type

	Metric

	
read_metrics_provider(name, namespace)

	Read the specified MetricsProvider.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MetricsProvider.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the MetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	MetricsProvider

	
read_role(name)

	Read the specified Role.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Role.

	Returns

	Body of the HTTP response.

	Return type

	Role

	
read_role_binding(name)

	Read the specified RoleBinding.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the RoleBinding.

	Returns

	Body of the HTTP response.

	Return type

	RoleBinding

	
update_global_metric(body, name)

	Update the specified GlobalMetric.

	Parameters

	
	body (GlobalMetric) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalMetric.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetric

	
update_global_metrics_provider(body, name)

	Update the specified GlobalMetricsProvider.

	Parameters

	
	body (GlobalMetricsProvider) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalMetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricsProvider

	
update_metric(body, name, namespace)

	Update the specified GlobalMetric.

	Parameters

	
	body (GlobalMetric) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Metric.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the Metric

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetric

	
update_metrics_provider(body, name, namespace)

	Update the specified MetricsProvider.

	Parameters

	
	body (MetricsProvider) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MetricsProvider.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the MetricsProvider.

	Returns

	Body of the HTTP response.

	Return type

	MetricsProvider

	
update_role(body, name)

	Update the specified Role.

	Parameters

	
	body (Role) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Role.

	Returns

	Body of the HTTP response.

	Return type

	Role

	
update_role_binding(body, name)

	Update the specified RoleBinding.

	Parameters

	
	body (RoleBinding) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the RoleBinding.

	Returns

	Body of the HTTP response.

	Return type

	RoleBinding

	
watch_global_metrics(heartbeat=None)

	Generate a watcher for the GlobalMetrics in the namespace.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricList

	
watch_global_metrics_providers(heartbeat=None)

	Generate a watcher for the GlobalMetricsProviders in the namespace.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	GlobalMetricsProviderList

	
watch_metrics(namespace=None, heartbeat=None)

	Generate a watcher for the Metrics in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the Metric

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	MetricList

	
watch_metrics_providers(namespace=None, heartbeat=None)

	Generate a watcher for the MetricsProviders in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace of the MetricsProvider.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	MetricsProviderList

	
watch_role_bindings(heartbeat=None)

	Generate a watcher for the RoleBindings in the namespace.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	RoleBindingList

	
watch_roles(heartbeat=None)

	Generate a watcher for the Roles in the namespace.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	RoleList

	
class krake.client.infrastructure.InfrastructureApi(client)

	Bases: krake.client.ApiClient

Infrastructure API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
 infrastructure_api = InfrastructureApi(client)

	Parameters

	client (krake.client.Client) – API client for accessing the Krake HTTP API

	
create_cloud(body, namespace)

	Create the specified Cloud.

	Parameters

	
	body (Cloud) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	Returns

	Body of the HTTP response.

	Return type

	Cloud

	
create_global_cloud(body)

	Create the specified GlobalCloud.

	Parameters

	body (GlobalCloud) – Body of the HTTP request.

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloud

	
create_global_infrastructure_provider(body)

	Create the specified GlobalInfrastructureProvider.

	Parameters

	body (GlobalInfrastructureProvider) – Body of the HTTP request.

	Returns

	Body of the HTTP response.

	Return type

	GlobalInfrastructureProvider

	
create_infrastructure_provider(body, namespace)

	Create the specified InfrastructureProvider.

	Parameters

	
	body (InfrastructureProvider) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the InfrastructureProvider
will be updated.

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProvider

	
delete_cloud(namespace, name)

	Delete the specified Cloud.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cloud.

	Returns

	Body of the HTTP response.

	Return type

	Cloud

	
delete_global_cloud(name)

	Delete the specified GlobalCloud.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalCloud.

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloud

	
delete_global_infrastructure_provider(name)

	Delete the specified GlobalInfrastructureProvider.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalInfrastructureProvider.

	Returns

	Body of the HTTP response.

	Return type

	GlobalInfrastructureProvider

	
delete_infrastructure_provider(namespace, name)

	Delete the specified InfrastructureProvider.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the InfrastructureProvider
will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the InfrastructureProvider.

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProvider

	
list_all_clouds()

	List all Clouds.

	Returns

	Body of the HTTP response.

	Return type

	CloudList

	
list_all_infrastructure_providers()

	List all InfrastructureProviders.

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProviderList

	
list_clouds(namespace)

	List the Clouds in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	Returns

	Body of the HTTP response.

	Return type

	CloudList

	
list_global_clouds()

	List the GlobalClouds in the namespace.

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloudList

	
list_global_infrastructure_providers()

	List the GlobalInfrastructureProviders in the namespace.

	Returns

	Body of the HTTP response.

	Return type

	GlobalInfrastructureProviderList

	
list_infrastructure_providers(namespace)

	List the InfrastructureProviders in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the InfrastructureProvider
will be updated.

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProviderList

	
read_cloud(namespace, name)

	Read the specified Cloud.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cloud.

	Returns

	Body of the HTTP response.

	Return type

	Cloud

	
read_global_cloud(name)

	Read the specified GlobalCloud.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalCloud.

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloud

	
read_global_infrastructure_provider(name)

	Read the specified GlobalInfrastructureProvider.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalInfrastructureProvider.

	Returns

	Body of the HTTP response.

	Return type

	GlobalInfrastructureProvider

	
read_infrastructure_provider(namespace, name)

	Read the specified InfrastructureProvider.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the InfrastructureProvider
will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the InfrastructureProvider.

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProvider

	
update_cloud(body, namespace, name)

	Update the specified Cloud.

	Parameters

	
	body (Cloud) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cloud.

	Returns

	Body of the HTTP response.

	Return type

	Cloud

	
update_cloud_status(body, namespace, name)

	Update the specified Cloud.

	Parameters

	
	body (Cloud) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cloud.

	Returns

	Body of the HTTP response.

	Return type

	Cloud

	
update_global_cloud(body, name)

	Update the specified GlobalCloud.

	Parameters

	
	body (GlobalCloud) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalCloud.

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloud

	
update_global_cloud_status(body, name)

	Update the specified GlobalCloud.

	Parameters

	
	body (GlobalCloud) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalCloud.

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloud

	
update_global_infrastructure_provider(body, name)

	Update the specified GlobalInfrastructureProvider.

	Parameters

	
	body (GlobalInfrastructureProvider) – Body of the HTTP request.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the GlobalInfrastructureProvider.

	Returns

	Body of the HTTP response.

	Return type

	GlobalInfrastructureProvider

	
update_infrastructure_provider(body, namespace, name)

	Update the specified InfrastructureProvider.

	Parameters

	
	body (InfrastructureProvider) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the InfrastructureProvider
will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the InfrastructureProvider.

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProvider

	
watch_all_clouds(heartbeat=None)

	Generate a watcher for all Clouds.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a
heartbeat in form of an empty newline.
Passing 0 disables the heartbeat. Default: 10 seconds

	Returns

	Body of the HTTP response.

	Return type

	CloudList

	
watch_all_infrastructure_providers(heartbeat=None)

	Generate a watcher for all InfrastructureProviders.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a
heartbeat in form of an empty newline.
Passing 0 disables the heartbeat. Default: 10 seconds

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProviderList

	
watch_clouds(namespace, heartbeat=None)

	Generate a watcher for the Clouds in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cloud will be updated.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a
heartbeat in form of an empty newline.
Passing 0 disables the heartbeat. Default: 10 seconds

	Returns

	Body of the HTTP response.

	Return type

	CloudList

	
watch_global_clouds(heartbeat=None)

	Generate a watcher for the GlobalClouds in the namespace.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a
heartbeat in form of an empty newline.
Passing 0 disables the heartbeat. Default: 10 seconds

	Returns

	Body of the HTTP response.

	Return type

	GlobalCloudList

	
watch_global_infrastructure_providers(heartbeat=None)

	Generate a watcher for the GlobalInfrastructureProviders in the namespace.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends
a heartbeat in form of an empty newline.
Passing 0 disables the heartbeat. Default: 10 seconds

	Returns

	Body of the HTTP response.

	Return type

	GlobalInfrastructureProviderList

	
watch_infrastructure_providers(namespace, heartbeat=None)

	Generate a watcher for the InfrastructureProviders in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the InfrastructureProvider
will be updated.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a
heartbeat in form of an empty newline.
Passing 0 disables the heartbeat. Default: 10 seconds

	Returns

	Body of the HTTP response.

	Return type

	InfrastructureProviderList

	
class krake.client.kubernetes.KubernetesApi(client)

	Bases: krake.client.ApiClient

Kubernetes API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
 kubernetes_api = KubernetesApi(client)

	Parameters

	client (krake.client.Client) – API client for accessing the Krake HTTP API

	
create_application(body, namespace)

	Creates the specified Application.

	Parameters

	
	body (Application) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
create_cluster(body, namespace)

	Creates the specified Cluster.

	Parameters

	
	body (Cluster) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	Returns

	Body of the HTTP response.

	Return type

	Cluster

	
delete_application(namespace, name)

	Deletes the specified Application.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
delete_cluster(namespace, name)

	Deletes the specified Cluster.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cluster.

	Returns

	Body of the HTTP response.

	Return type

	Cluster

	
list_all_applications()

	Lists all Applications.

	Returns

	Body of the HTTP response.

	Return type

	ApplicationList

	
list_all_clusters()

	Lists all Clusters.

	Returns

	Body of the HTTP response.

	Return type

	ClusterList

	
list_applications(namespace)

	Lists the Applications in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	Returns

	Body of the HTTP response.

	Return type

	ApplicationList

	
list_clusters(namespace)

	Lists the Clusters in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	Returns

	Body of the HTTP response.

	Return type

	ClusterList

	
read_application(namespace, name)

	Reads the specified Application.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
read_cluster(namespace, name)

	Reads the specified Cluster.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cluster.

	Returns

	Body of the HTTP response.

	Return type

	Cluster

	
update_application(body, namespace, name)

	Updates the specified Application.

	Parameters

	
	body (Application) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
update_application_binding(body, namespace, name)

	Updates the specified Application.

	Parameters

	
	body (ClusterBinding) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
update_application_complete(body, namespace, name)

	Updates the specified Application.

	Parameters

	
	body (ApplicationComplete) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
update_application_shutdown(body, namespace, name)

	Updates the specified Application.

	Parameters

	
	body (ApplicationShutdown) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
update_application_status(body, namespace, name)

	Updates the specified Application.

	Parameters

	
	body (Application) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Application.

	Returns

	Body of the HTTP response.

	Return type

	Application

	
update_cluster(body, namespace, name)

	Updates the specified Cluster.

	Parameters

	
	body (Cluster) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cluster.

	Returns

	Body of the HTTP response.

	Return type

	Cluster

	
update_cluster_binding(body, namespace, name)

	Update the specified Cluster.

	Parameters

	
	body (CloudBinding) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cluster.

	Returns

	Body of the HTTP response.

	Return type

	Cluster

	
update_cluster_status(body, namespace, name)

	Updates the specified Cluster.

	Parameters

	
	body (Cluster) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Cluster.

	Returns

	Body of the HTTP response.

	Return type

	Cluster

	
watch_all_applications(heartbeat=None)

	Generates a watcher for all Applications.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds.

	Returns

	Body of the HTTP response.

	Return type

	ApplicationList

	
watch_all_clusters(heartbeat=None)

	Generates a watcher for all Clusters.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds.

	Returns

	Body of the HTTP response.

	Return type

	ClusterList

	
watch_applications(namespace, heartbeat=None)

	Generates a watcher for the Applications in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Application will be updated.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds.

	Returns

	Body of the HTTP response.

	Return type

	ApplicationList

	
watch_clusters(namespace, heartbeat=None)

	Generates a watcher for the Clusters in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Cluster will be updated.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds.

	Returns

	Body of the HTTP response.

	Return type

	ClusterList

	
class krake.client.openstack.OpenStackApi(client)

	Bases: krake.client.ApiClient

Openstack API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
 openstack_api = OpenStackApi(client)

	Parameters

	client (krake.client.Client) – API client for accessing the Krake HTTP API

	
create_magnum_cluster(body, namespace)

	Creates the specified MagnumCluster.

	Parameters

	
	body (MagnumCluster) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	Returns

	Body of the HTTP response.

	Return type

	MagnumCluster

	
create_project(body, namespace)

	Creates the specified Project.

	Parameters

	
	body (Project) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	Returns

	Body of the HTTP response.

	Return type

	Project

	
delete_magnum_cluster(namespace, name)

	Deletes the specified MagnumCluster.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MagnumCluster.

	Returns

	Body of the HTTP response.

	Return type

	MagnumCluster

	
delete_project(namespace, name)

	Deletes the specified Project.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Project.

	Returns

	Body of the HTTP response.

	Return type

	Project

	
list_all_magnum_clusters()

	Lists all MagnumClusters.

	Returns

	Body of the HTTP response.

	Return type

	MagnumClusterList

	
list_all_projects()

	Lists all Projects.

	Returns

	Body of the HTTP response.

	Return type

	ProjectList

	
list_magnum_clusters(namespace)

	Lists the MagnumClusters in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	Returns

	Body of the HTTP response.

	Return type

	MagnumClusterList

	
list_projects(namespace)

	Lists the Projects in the namespace.

	Parameters

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	Returns

	Body of the HTTP response.

	Return type

	ProjectList

	
read_magnum_cluster(namespace, name)

	Reads the specified MagnumCluster.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MagnumCluster.

	Returns

	Body of the HTTP response.

	Return type

	MagnumCluster

	
read_project(namespace, name)

	Reads the specified Project.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Project.

	Returns

	Body of the HTTP response.

	Return type

	Project

	
update_magnum_cluster(body, namespace, name)

	Updates the specified MagnumCluster.

	Parameters

	
	body (MagnumCluster) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MagnumCluster.

	Returns

	Body of the HTTP response.

	Return type

	MagnumCluster

	
update_magnum_cluster_binding(body, namespace, name)

	Updates the specified MagnumCluster.

	Parameters

	
	body (MagnumClusterBinding) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MagnumCluster.

	Returns

	Body of the HTTP response.

	Return type

	MagnumCluster

	
update_magnum_cluster_status(body, namespace, name)

	Updates the specified MagnumCluster.

	Parameters

	
	body (MagnumCluster) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the MagnumCluster.

	Returns

	Body of the HTTP response.

	Return type

	MagnumCluster

	
update_project(body, namespace, name)

	Updates the specified Project.

	Parameters

	
	body (Project) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Project.

	Returns

	Body of the HTTP response.

	Return type

	Project

	
update_project_status(body, namespace, name)

	Updates the specified Project.

	Parameters

	
	body (Project) – Body of the HTTP request.

	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Project.

	Returns

	Body of the HTTP response.

	Return type

	Project

	
watch_all_magnum_clusters(heartbeat=None)

	Generates a watcher for all MagnumClusters.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	MagnumClusterList

	
watch_all_projects(heartbeat=None)

	Generates a watcher for all Projects.

	Parameters

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	ProjectList

	
watch_magnum_clusters(namespace, heartbeat=None)

	Generates a watcher for the MagnumClusters in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the MagnumCluster will be updated.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	MagnumClusterList

	
watch_projects(namespace, heartbeat=None)

	Generates a watcher for the Projects in the namespace.

	Parameters

	
	namespace (str [https://docs.python.org/3/library/stdtypes.html#str]) – namespace in which the Project will be updated.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default:
10 seconds

	Returns

	Body of the HTTP response.

	Return type

	ProjectList

Controllers

This module comprises Krake controllers responsible for watching API
resources and transferring the state of related real-world resources to the
desired state specified in the API. Controllers can be written in any language
and with every technique. This module provides basic functionality and
paradigms to implement a simple “control loop mechanism” in Python.

	
class krake.controller.BurstWindow(name, burst_time, max_retry=0, loop=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Context manager that can be used to check the time arbitrary code took to
run. This arbitrary code should be something that needs to run indefinitely. If
this code fails too quickly, it is not restarted.

The criteria are as follows: every max_retry times, if the average
running time of the task is more than the burst_time, the task
is considered savable and the context manager is exited. If not, an
exception will be raised.

window = BurstWindow("my_task", 10, max_retry=3)

while True: # use any kind of loop
 with window:
 # code to retry
 # ...

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the background task (for debugging purposes).

	burst_time (float [https://docs.python.org/3/library/functions.html#float]) – maximal accepted average time for a retried
task.

	max_retry (int [https://docs.python.org/3/library/functions.html#int], optional) – number of times the task should be retried before
testing the burst time. If 0, the task will be retried indefinitely,
without looking for attr:burst_time.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	
__exit__(*exc)

	After the given number of tries, raise an exception if the content of the
context manager failed too fast.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if a background task keep on failing more regularly
than what the burst time allows.

	
class krake.controller.Controller(api_endpoint, loop=None, ssl_context=None, debounce=0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for Krake controllers providing basic functionality for
watching and enqueuing API resources.

The basic workflow is as follows: the controller holds several background
tasks. The API resources are watched by a Reflector, which calls a handler
on each received state of a resource. Any received new state is put into a
WorkQueue. Multiple workers consume this queue. Workers are
responsible for doing the actual state transitions. The work queue ensures
that a resource is processed by one worker at a time (strict sequential).
The status of the real world resources is monitored by an Observer (another
background task).

However, this workflow is just a possibility. By modifying __init__()
(or other functions), it is possible to add other queues, change the
workers at will, add several Reflector or Observer, create additional
background tasks…

	Parameters

	
	api_endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to the API

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be used.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], optional) – if given, this context will be
used to communicate with the API endpoint.

	debounce (float [https://docs.python.org/3/library/functions.html#float], optional) – value of the debounce for the WorkQueue.

	
cleanup()

	Unregister all background tasks that are attributes.

	
create_endpoint(api_endpoint)

	Ensure the scheme (HTTP/HTTPS) of the endpoint to connect to the
API, depending on the existence of a given SSL context.

	Parameters

	api_endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – the given API endpoint.

	Returns

	the final endpoint with the right scheme.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
prepare(client)

	Start all API clients that the controller will be using. Create all
necessary coroutines and register them as background tasks that will be
started by the Controller.

	Parameters

	client (krake.client.Client) – the base client to use for the API client
to connect to the API.

	
register_task(corofactory, name=None)

	
	Add a coroutine to the list of task that will be run in the background

	of the Controller.

	Parameters

	
	corofactory (coroutine) – the coroutine that will be used as task. It must
be running indefinitely and not catch asyncio.CancelledError [https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError].

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – the name of the background task, for logging
purposes.

	
retry(coro, name='')

	Start a background task. If the task fails not too regularly, restart it
A BurstWindow is used to decide if the task should be restarted.

	Parameters

	
	coro (coroutine) – the background task to try to restart.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the background task (for debugging purposes).

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if a background task keep on failing more regularly
than what the burst time allows.

	
run()

	Start at once all the registered background tasks with the retry logic.

	
simple_on_receive(resource, condition=<class 'bool'>)

	Example of a resource receiving handler, that accepts a resource
under conditions, and if they are met, add the resource to the queue.
When listing values, you get a Resource, while when watching, you get
an Event.

	Parameters

	
	resource (krake.data.serializable.Serializable) – a resource
received by listing.

	condition (callable, optional) – a condition to accept the given
resource. The signature should be (resource) -> bool.

	
exception krake.controller.ControllerError(message)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for exceptions during handling of a resource.

	
__str__()

	Custom error message for exception

	
class krake.controller.Executor(controller, loop=None, catch_signals=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Component used to encapsulate the Controller. It takes care of starting
the Controller, and handles all logic not directly dependent to the
Controller, such as the handlers for the UNIX signals.

It implements the asynchronous context manager protocol. The controller
itself can be awaited. The “await” call blocks until the Controller
terminates.

executor = Executor(controller)
async with executor:
 await executor

	Parameters

	
	controller (krake.controller.Controller) – the controller that the
executor is tasked with starting.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	catch_signals (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the Executor will add handlers
to catch killing signals in order to stop the Controller and the
Executor gracefully.

	
__aenter__()

	Create the signal handlers and start the Controller as background
task.

	
__aexit__(*exc)

	Wait for the managed controller to be finished and cleanup.

	
stop()

	Called as signal handler. Stop the Controller managed by the
instance.

	
class krake.controller.Observer(resource, on_res_update, time_step=1)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Component used to watch the actual status of one instance of any resource.

	Parameters

	
	resource – the instance of a resource that the Observer has to watch.

	on_res_update (coroutine) – a coroutine called when a resource’s actual status
differs from the status sent by the database. Its signature is:
(resource) -> updated_resource. updated_resource is the instance of
the resource that is up-to-date with the API. The Observer internal instance
of the resource to observe will be updated. If the API cannot be contacted,
None can be returned. In this case the internal instance of the Observer
will not be updated.

	time_step (int [https://docs.python.org/3/library/functions.html#int], optional) – how frequently the Observer should watch the actual
status of the resources.

	
observe_resource()

	Update the watched resource if its status is different from the status
observed. The status sent for the update is the observed one.

	
poll_resource()

	Fetch the current status of the watched resource.

	Returns

	

	Return type

	krake.data.core.Status

	
run()

	Start the observing process indefinitely, with the Observer time step.

	
class krake.controller.Reflector(listing, watching, on_list=None, on_add=None, on_update=None, on_delete=None, resource_plural=None, loop=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Component used to contact the API, fetch resources and handle disconnections.

	Parameters

	
	listing (coroutine) – the coroutine used to get the list of resources currently
stored by the API. Its signature is: () -> <Resource>List.

	watching (coroutine) – the coroutine used to watch updates on the resources,
as sent by the API. Its signature is: () -> watching object. This
watching object should be able to be used as context manager, and as
generator.

	on_list (coroutine) – the coroutine called when listing all resources with the
fetched resources as parameter. Its signature is: (resource) -> None.

	on_add (coroutine, optional) – the coroutine called during watch, when an
ADDED event has been received. Its signature is: (resource) -> None.

	on_update (coroutine, optional) – the coroutine called during watch, when a
MODIFIED event has been received. Its signature is: (resource) -> None.

	on_delete (coroutine, optional) – the coroutine called during watch, when a
DELETED event has been received. Its signature is: (resource) -> None.

	resource_plural (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – name of the resource that the reflector is
monitoring. For logging purpose. Default is "resources"

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	
__call__(min_interval=2)

	Start the Reflector. Encapsulate the connections with a retry logic, as
disconnections are expected. If any other kind of error occurs, they are not
swallowed.

Between two connection attempts, the connection will be retried later with a
delay. If the connection fails to fast, the delay will be increased, to wait for
the API to be ready. If the connection succeeded for a certain interval, the
value of the delay is reset.

	Parameters

	min_interval (int [https://docs.python.org/3/library/functions.html#int], optional) – if the connection was kept longer than this
value, the delay is reset to the base value, as it is considered that a
connection was possible.

	
list_and_watch()

	Start the given list and watch coroutines.

	
list_resource()

	Pass each resource returned by the current instance’s listing function
as parameter to the receiving function.

	
watch_resource(watcher)

	Pass each resource returned by the current instance’s watching object
as parameter to the event receiving functions.

	Parameters

	watcher – an object that returns a new event every time an update on a
resource occurs

	
class krake.controller.WorkQueue(maxsize=0, debounce=0, loop=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple asynchronous work queue.

The key manages a set of key-value pairs. The queue guarantees strict
sequential processing of keys: A key-value pair retrieved via get()
is not returned via get() again until done() with the
corresponding key is called, even if a new key-value pair with the
corresponding key was put into the queue during the time of processing.

	Parameters

	
	maxsize (int [https://docs.python.org/3/library/functions.html#int], optional) – Maximal number of items in the queue before
put() blocks. Defaults to 0 which means the size is infinite

	debounce (float [https://docs.python.org/3/library/functions.html#float]) – time in second for the debouncing of the values. A
number higher than 0 means that the queue will wait the given time
before giving a value. If a newer value is received, this time is
reset.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used

dirty holds the last known value of a key i.e. the next value which will be
given by the get() method.

timers holds the current debounce coroutine for a key. Either this coroutine
is canceled (if a new value for a key is given to the WorkQueue through the
meth:put) or the value is added to the dirty dictionary.

active ensures that a key isn’t added twice to the queue. Keys are
added to this set when they are first added to the dirty dictionary, and are
removed from the set when the Worker calls the done() method.

Todo

	Implement rate limiting and delays

	
cancel(key)

	Cancel the corresponding debounce coroutine for the given key. An attempt to
cancel the coroutine for a key which was not inserted into the queue does not
raise any error, and is simply ignored.

	Parameters

	key – Key that identifies the value

	
close()

	Cancel all pending debounce timers.

	
done(key)

	Called by the Worker to notify that the work on the given key is done. This
method first removes the key from the active set, and then adds this key
to the set if a new value has arrived.

	Parameters

	key – Key that used to identity the value

	
empty()

	Check if the queue is empty

	Returns

	bool: True if there are no dirty keys

	
full()

	Check if the queue is full

	Returns

	True if the queue is full

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get()

	Retrieve a key-value pair from the queue.

The queue will not return this key as long as done() is not
called with this key.

	Returns

	(key, value) tuple

	
put(key, value, delay=None)

	Put a new key-value pair into the queue.

	Parameters

	
	key – Key that used to identify the value

	value – New value that is associated with the key

	delay (float [https://docs.python.org/3/library/functions.html#float], optional) – Number of seconds the put should be
delayed. If None [https://docs.python.org/3/library/constants.html#None] is given, debounce will be
used.

	
size()

	Returns the number of keys marked as “dirty”

	Returns

	Number of dirty keys in the queue

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
krake.controller.create_ssl_context(tls_config)

	From a certificate, create an SSL Context that can be used on the client side
for communicating with a Server.

	Parameters

	tls_config (krake.data.config.TlsClientConfiguration) – the “tls” configuration
part of a controller.

	Returns

	a default SSL Context tweaked with the given certificate
elements

	Return type

	ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext]

	
krake.controller.joint(*aws, loop=None)

	Start several coroutines together. Ensure that if one stops, all others
are cancelled as well.

	FIXME: using asyncio.gather, if an error occurs in one of the “gathered” task, all

	the tasks are not necessarily stopped.
@see https://stackoverflow.com/questions/59073556/how-to-cancel-all-remaining-tasks-in-gather-if-one-fails # noqa

	Parameters

	
	aws (Awaitable) – a list of await-ables to start concurrently.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	
krake.controller.run(controller)

	Start the controller using an executor.

	Parameters

	controller (krake.controller.Controller) – the controller to start

	
krake.controller.sigmoid_delay(retries, maximum=60.0, steepness=0.75, midpoint=10.0, base=1.0)

	Compute a waiting time (delay) depending on the number of retries already
performed. The computing function is a sigmoid.

	Parameters

	
	retries (int [https://docs.python.org/3/library/functions.html#int]) – the number of attempts that happened already.

	maximum (float [https://docs.python.org/3/library/functions.html#float]) – the maximum delay that can be attained. Maximum of the sigmoid.

	steepness (float [https://docs.python.org/3/library/functions.html#float]) – how fast the delay increases. Steepness of the sigmoid.

	midpoint (float [https://docs.python.org/3/library/functions.html#float]) – number of retries to reach the delay between maximum and base.
Midpoint of the sigmoid.

	base (float [https://docs.python.org/3/library/functions.html#float]) – minimum value for the delay.

	Returns

	the computed next delay.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Controller Kubernetes Application

Module comprises Krake Kubernetes application controller logic.

	
class krake.controller.kubernetes.application.KubernetesApplicationController(api_endpoint, worker_count=10, loop=None, ssl_context=None, debounce=0, hooks=None, time_step=2)

	Bases: krake.controller.Controller

Controller responsible for krake.data.kubernetes.Application resources.
The controller manages Application resources in “SCHEDULED” and “DELETING” state.

	
kubernetes_api

	Krake internal API to connect to the
“kubernetes” API of Krake.

	Type

	KubernetesApi

	
application_reflector

	reflector for the Application resource of the

	Type

	Reflector

	
"kubernetes" API of Krake.

	

	
worker_count

	the amount of worker function that should be run as
background tasks.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
hooks

	configuration to be used by the
hooks supported by the controller.

	Type

	krake.data.config.HooksConfiguration

	
observer_time_step

	for the Observers: the number of seconds between two
observations of the actual resource.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
observers

	mapping of all Application
resource’ UID to their respective Observer and task responsible for the
Observer.
The signature is: <uid> --> <observer>, <reference_to_observer's_task>.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], (Observer, Coroutine)]

	Parameters

	
	api_endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to the API

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], optional) – if given, this context will be
used to communicate with the API endpoint.

	debounce (float [https://docs.python.org/3/library/functions.html#float], optional) – value of the debounce for the
WorkQueue.

	worker_count (int [https://docs.python.org/3/library/functions.html#int], optional) – the amount of worker function that should be
run as background tasks.

	time_step (float [https://docs.python.org/3/library/functions.html#float], optional) – for the Observers: the number of seconds between
two observations of the actual resource.

	
check_external_endpoint()

	Ensure the scheme in the external endpoint (if provided) is matching the
scheme used by the Krake API (“https” or “http” if TLS is enabled or disabled
respectively).

If they are not, a warning is logged and the scheme is replaced in the endpoint.

	
cleanup()

	Unregister all background tasks that are attributes.

	
handle_resource(run_once=False)

	Infinite loop which fetches and hand over the resources to the right
coroutine. The specific exceptions and error handling have to be added here.

This function is meant to be run as background task. Lock the handling of a
resource with the lock attribute.

	Parameters

	run_once (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the function only handles one resource,
then stops. Otherwise, continue to handle each new resource on the
queue indefinitely.

	
list_app(app)

	Accept the Applications that need to be managed by the Controller on listing
them at startup. Starts the observer for the Applications with actual resources.

	Parameters

	app (krake.data.kubernetes.Application) – the Application to accept or not.

	
on_status_update(app)

	Called when an Observer noticed a difference of the status of an application.
Request an update of the status on the API.

	Parameters

	
	app (krake.data.kubernetes.Application) – the Application whose

	has been updated or (status) –

	Returns

	the updated Application sent by the API.

	Return type

	krake.data.kubernetes.Application

	
prepare(client)

	Start all API clients that the controller will be using. Create all
necessary coroutines and register them as background tasks that will be
started by the Controller.

	Parameters

	client (krake.client.Client) – the base client to use for the API client
to connect to the API.

	
static scheduled_or_deleting(app)

	Check if a resource should be accepted or not by the Controller to be
handled.

	Parameters

	app (krake.data.kubernetes.Application) – the Application to check.

	Returns

	True if the Application should be handled, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class krake.controller.kubernetes.application.KubernetesClient(kubeconfig, custom_resources=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Client for connecting to a Kubernetes cluster. This client:

	prepares the connection based on the information stored in the cluster’s
kubeconfig file;

	prepares the connection to a custom resource’s API, if a Kubernetes resource to be
managed relies on a Kubernetes custom resource;

	offers two methods:
- apply(): apply a manifest to create or update a resource
- delete(): delete a resource.

The client can be used as a context manager, with the Kubernetes client being
deleted when leaving the context.

	
kubeconfig

	provided kubeconfig file, to connect to the cluster.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
custom_resources

	name of all custom resources that are available on
the current cluster.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
resource_apis

	mapping of a Kubernetes’s resource name to the API object
of the Kubernetes client which manages it (e.g. a Pod belongs to the
“CoreV1” API of Kubernetes, so the mapping would be “Pod” ->
<client.CoreV1Api_instance>), wrapped in an ApiAdapter instance.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
api_client

	base API object created by the Kubernetes API library.

	Type

	ApiClient

	
apply(resource)

	Apply the given resource on the cluster using its internal data as reference.

	Parameters

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the resource to create, as a manifest file translated in
dict.

	Returns

	response from the cluster as given by the Kubernetes client.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
custom_resource_apis

	Determine custom resource apis for given cluster.

If given cluster supports custom resources, Krake determines
apis from custom resource definitions.

The custom resources apis are requested only once and then
are cached by cached property decorator. This is an advantage in
case of the application contains multiple Kubernetes custom resources
with the same kind, but with the different content, see example.

Example:

apiVersion: stable.example.com/v1
kind: CRD
metadata:
 name: cdr_1
spec:
 crdSpec: spec_1

apiVersion: stable.example.com/v1
kind: CRD
metadata:
 name: cdr_2
spec:
 crdSpec: spec_2

	Returns

	Custom resource apis

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	InvalidCustomResourceDefinitionError – If the request for the custom resource
definition failed.

	
default_namespace

	From the kubeconfig file, get the default Kubernetes namespace where the
resources will be created. If no namespace is specified, “default” will be used.

	Returns

	the default namespace in the kubeconfig file.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
delete(resource)

	Delete the given resource on the cluster using its internal data as
reference.

	Parameters

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the resource to delete, as a manifest file translated in
dict.

	Returns

	
	response from the

	cluster as given by the Kubernetes client.

	Return type

	kubernetes_asyncio.client.models.v1_status.V1Status

	Raises

	
	InvalidManifestError – if the kind or name is not present in the resource.

	ApiException – by the Kubernetes API in case of malformed content or
error on the cluster’s side.

	
get_immutables(resource)

	From a resource manifest, look for the group, version, kind, name and
namespace of the resource.

If the latter is not present, the default namespace of the cluster is
used instead.

	Parameters

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – the manifest file translated in dict of the
resource from which the fields will be extracted.

	Returns

	
	the group, version, kind, name and

	namespace of the resource.

	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])

	Raises

	InvalidResourceError – if the apiVersion, kind or the name is not present.

	Raises

	
	InvalidManifestError – if the apiVersion, kind or name is not
present in the resource.

	ApiException – by the Kubernetes API in case of malformed content or
error on the cluster’s side.

	
get_resource_api(group, version, kind)

	
	Get the Kubernetes API corresponding to the given group and version.

	If not found, look for it into the supported custom resources for the cluster.

	Parameters

	
	group (str [https://docs.python.org/3/library/stdtypes.html#str]) – group of the Kubernetes resource,
for which the Kubernetes API should be retrieved.

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – version of the Kubernetes resource,
for which the Kubernetes API should be retrieved.

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the Kubernetes resource,
for which the Kubernetes API should be retrieved.

	Returns

	the API adapter to use for this resource.

	Return type

	ApiAdapter

	Raises

	UnsupportedResourceError – if the group and version given are not
supported by the Controller, and given kind is not a
supported custom resource.

	
static log_response(response, kind, action=None)

	Utility function to parse a response from the Kubernetes cluster and log its
content.

	Parameters

	
	response (object [https://docs.python.org/3/library/functions.html#object]) – the response, as handed over by the Kubernetes client
library.

	kind (str [https://docs.python.org/3/library/stdtypes.html#str]) – kind of the original resource that was managed (may be different
from the kind of the response).

	action (str [https://docs.python.org/3/library/stdtypes.html#str]) – the type of action performed to get this response.

	
shutdown(app)

	Gracefully shutdown the given application on the cluster by calling the apps
exposed shutdown address.

	Parameters

	() (app) – the app to gracefully shutdown.

	Returns

	
	response from the

	cluster as given by the Kubernetes client.

	Return type

	kubernetes_asyncio.client.models.v1_status.V1Status

	Raises

	
	InvalidManifestError – if the kind or name is not present in the resource.

	ApiException – by the Kubernetes API in case of malformed content or
error on the cluster’s side.

	
krake.controller.kubernetes.application.register_service(app, cluster, resource, response)

	Register endpoint of Kubernetes Service object on creation and update.

	Parameters

	
	app (krake.data.kubernetes.Application) – Application the service belongs to

	cluster (krake.data.kubernetes.Cluster) – The cluster on which the
application is running

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Kubernetes object description as specified in the
specification of the application.

	response (kubernetes_asyncio.client.V1Service) – Response of the
Kubernetes API

	
krake.controller.kubernetes.application.unregister_service(app, resource, **kwargs)

	Unregister endpoint of Kubernetes Service object on deletion.

	Parameters

	
	app (krake.data.kubernetes.Application) – Application the service belongs to

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Kubernetes object description as specified in the
specification of the application.

	
class krake.controller.kubernetes.application.KubernetesApplicationObserver(cluster, resource, on_res_update, time_step=2)

	Bases: krake.controller.Observer

Observer specific for Kubernetes Applications. One observer is created for each
Application managed by the Controller, but not one per Kubernetes resource
(Deployment, Service…). If several resources are defined by an Application, they
are all monitored by the same observer.

The observer gets the actual status of the resources on the cluster using the
Kubernetes API, and compare it to the status stored in the API.

	The observer is:

	
	started at initial Krake resource creation;

	deleted when a resource needs to be updated, then started again when it is done;

	simply deleted on resource deletion.

	Parameters

	
	cluster (krake.data.kubernetes.Cluster) – the cluster on which the observed
Application is created.

	resource (krake.data.kubernetes.Application) – the application that will be
observed.

	on_res_update (coroutine) – a coroutine called when a resource’s actual status
differs from the status sent by the database. Its signature is:
(resource) -> updated_resource. updated_resource is the instance of
the resource that is up-to-date with the API. The Observer internal instance
of the resource to observe will be updated. If the API cannot be contacted,
None can be returned. In this case the internal instance of the Observer
will not be updated.

	time_step (int [https://docs.python.org/3/library/functions.html#int], optional) – how frequently the Observer should watch the actual
status of the resources.

	
poll_resource()

	Fetch the current status of the Application monitored by the Observer.

	Returns

	
	the status object created using information from the

	real world Applications resource.

	Return type

	krake.data.core.Status

	
krake.controller.kubernetes.application.get_kubernetes_resource_idx(manifest, resource, check_namespace=False)

	Get a resource identified by its resource api, kind and name, from a manifest
file

	Parameters

	
	manifest (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Manifest file to get the resource from

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], dict|list|str]) – resource to find

	check_namespace (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to decide, if the namespace should be checked

	Raises

	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – If the resource is not present in the manifest

	Returns

	Position of the resource in the manifest

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class krake.controller.kubernetes.application.HookType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
krake.controller.kubernetes.application.update_last_applied_manifest_from_resp(app, response, **kwargs)

	Hook run after the creation or update of an application in order to update the
status.last_applied_manifest using the k8s response.

	Parameters

	
	app (krake.data.kubernetes.Application) – Application the service belongs to

	response (kubernetes_asyncio.client.V1Status) – Response of the Kubernetes API

After a Kubernetes resource has been created/updated, the
status.last_applied_manifest has to be updated. All fields already initialized
(either from the mangling of spec.manifest, or by a previous call to this
function) should be left untouched. Only observed fields which are not present in
status.last_applied_manifest should be initialized.

	
krake.controller.kubernetes.application.update_last_observed_manifest_from_resp(app, response, **kwargs)

	Handler to run after the creation or update of a Kubernetes resource to update
the last_observed_manifest from the response of the Kubernetes API.

	Parameters

	
	app (krake.data.kubernetes.Application) – Application the service belongs to

	response (kubernetes_asyncio.client.V1Service) – Response of the
Kubernetes API

The target last_observed_manifest holds the value of all observed fields plus the
special control dictionaries for the list length

Controller Kubernetes Cluster

Module comprises Krake Kubernetes cluster controller logic.

	
class krake.controller.kubernetes.cluster.KubernetesClusterController(api_endpoint, worker_count=10, loop=None, ssl_context=None, debounce=0, time_step=2)

	Bases: krake.controller.Controller

Controller responsible for krake.data.kubernetes.Application and
krake.data.kubernetes.Cluster resources. The controller manages
Application resources in “SCHEDULED” and “DELETING” state and Clusters in any state.

	
kubernetes_api

	Krake internal API to connect to the
“kubernetes” API of Krake.

	Type

	KubernetesApi

	
cluster_reflector

	reflector for the Cluster resource of the

	Type

	Reflector

	
"kubernetes" API of Krake.

	

	
worker_count

	the amount of worker function that should be run as
background tasks.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
observer_time_step

	for the Observers: the number of seconds between two
observations of the actual resource.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
observers

	mapping of all Application or
Cluster resource’ UID to their respective Observer and task responsible for
the Observer.
The signature is: <uid> --> <observer>, <reference_to_observer's_task>.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], (Observer, Coroutine)]

	Parameters

	
	api_endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to the API

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], optional) – if given, this context will be
used to communicate with the API endpoint.

	debounce (float [https://docs.python.org/3/library/functions.html#float], optional) – value of the debounce for the
WorkQueue.

	worker_count (int [https://docs.python.org/3/library/functions.html#int], optional) – the amount of worker function that should be
run as background tasks.

	time_step (float [https://docs.python.org/3/library/functions.html#float], optional) – for the Observers: the number of seconds between
two observations of the actual resource.

	
static accept_accessible(cluster)

	Check if a resource should be accepted or not by the Controller.

	Parameters

	cluster (krake.data.kubernetes.Cluster) – the Cluster to check.

	Returns

	True if the Cluster should be handled, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cleanup()

	Unregister all background tasks that are attributes.

	
handle_resource(run_once=False)

	Infinite loop which fetches and hand over the resources to the right
coroutine. The specific exceptions and error handling have to be added here.

This function is meant to be run as background task. Lock the handling of a
resource with the lock attribute.

	Parameters

	run_once (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the function only handles one resource,
then stops. Otherwise, continue to handle each new resource on the
queue indefinitely.

	
list_cluster(cluster)

	Accept the Clusters that need to be managed by the Controller on listing
them at startup. Starts the observer for the Cluster.

	Parameters

	cluster (krake.data.kubernetes.Cluster) – the cluster to accept or not.

	
on_status_update(cluster)

	Called when an Observer noticed a difference of the status of a resource.
Request an update of the status on the API.

	Parameters

	
	cluster (krake.data.kubernetes.Cluster) – the Cluster whose status

	been updated. (has) –

	Returns

	the updated Cluster sent by the API.

	Return type

	krake.data.kubernetes.Cluster

	
prepare(client)

	Start all API clients that the controller will be using. Create all
necessary coroutines and register them as background tasks that will be
started by the Controller.

	Parameters

	client (krake.client.Client) – the base client to use for the API client
to connect to the API.

	
krake.controller.kubernetes.cluster.register_service(app, cluster, resource, response)

	Register endpoint of Kubernetes Service object on creation and update.

	Parameters

	
	app (krake.data.kubernetes.Application) – Application the service belongs to

	cluster (krake.data.kubernetes.Cluster) – The cluster on which the
application is running

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Kubernetes object description as specified in the
specification of the application.

	response (kubernetes_asyncio.client.V1Service) – Response of the
Kubernetes API

	
krake.controller.kubernetes.cluster.unregister_service(app, resource, **kwargs)

	Unregister endpoint of Kubernetes Service object on deletion.

	Parameters

	
	app (krake.data.kubernetes.Application) – Application the service belongs to

	resource (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Kubernetes object description as specified in the
specification of the application.

	
class krake.controller.kubernetes.cluster.KubernetesClusterObserver(resource, on_res_update, time_step=2)

	Bases: krake.controller.Observer

Observer specific for Kubernetes Clusters. One observer is created for each
Cluster managed by the Controller.

The observer gets the actual status of the cluster using the
Kubernetes API, and compare it to the status stored in the API.

	The observer is:

	
	started at initial Krake resource creation;

	deleted when a resource needs to be updated, then started again when it is done;

	simply deleted on resource deletion.

	Parameters

	
	resource (krake.data.kubernetes.Cluster) – the cluster which will be observed.

	on_res_update (coroutine) – a coroutine called when a resource’s actual status
differs from the status sent by the database. Its signature is:
(resource) -> updated_resource. updated_resource is the instance of
the resource that is up-to-date with the API. The Observer internal instance
of the resource to observe will be updated. If the API cannot be contacted,
None can be returned. In this case the internal instance of the Observer
will not be updated.

	time_step (int [https://docs.python.org/3/library/functions.html#int], optional) – how frequently the Observer should watch the actual
status of the resources.

	
poll_resource()

	Fetch the current status of the Cluster monitored by the Observer.

	Note regarding exceptions handling:

	The current cluster status is fetched by poll_resource() from its API.
If the cluster API is shutting down the API server responds with a 503
(service unavailable, apiserver is shutting down) HTTP response which
leads to the kubernetes client ApiException. If the cluster’s API has been
successfully shut down and there is an attempt to fetch cluster status,
the ClientConnectorError is raised instead.
Therefore, both exceptions should be handled.

	Returns

	
	the status object created using information from the

	real world Cluster.

	Return type

	krake.data.core.Status

	
class krake.controller.kubernetes.cluster.HookType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

Controller Scheduler

Module comprises Krake scheduling logic of the Krake application.

	
class krake.controller.scheduler.Scheduler(api_endpoint, worker_count=10, reschedule_after=60, stickiness=0.1, ssl_context=None, debounce=0, loop=None)

	Bases: krake.controller.Controller

The scheduler is a controller that receives all pending and updated
applications and selects the “best” backend for each one of them based
on metrics of the backends and application specifications.

	Parameters

	
	worker_count (int [https://docs.python.org/3/library/functions.html#int], optional) – the amount of worker function that
should be run as background tasks.

	reschedule_after (float [https://docs.python.org/3/library/functions.html#float], optional) – number of seconds after which a resource
should be rescheduled.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], optional) – SSL context that should be
used to communicate with the API server.

	debounce (float [https://docs.python.org/3/library/functions.html#float], optional) – number of seconds the scheduler should wait
before it reacts to a state change.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	
cleanup()

	Unregister all background tasks that are attributes.

	
prepare(client)

	Start all API clients that the controller will be using. Create all
necessary coroutines and register them as background tasks that will be
started by the Controller.

	Parameters

	client (krake.client.Client) – the base client to use for the API client
to connect to the API.

Controller Garbage Collector

This module defines the Garbage Collector present as a background task on the API
application. When a resource is marked as deleted, the GC mark all its dependents as
deleted. After cleanup is done by the respective Controller, the gc handles the final
deletion of resources.

Marking a resource as deleted (by setting the deleted timestamp of its metadata) is
irreversible: if the garbage collector receives such a resource, it will start the
complete deletion process, with no further user involvement.

The configuration should have the following structure:

api_endpoint: http://localhost:8080
worker_count: 5
debounce: 1
tls:
 enabled: false
 client_ca: tmp/pki/ca.pem
 client_cert: tmp/pki/system:gc.pem
 client_key: tmp/pki/system:gc-key.pem

log:
 ...

	
exception krake.controller.gc.DependencyCycleException(resource, cycle, *args)

	Bases: krake.controller.gc.DependencyException

Raised in case a cycle in the dependencies has been discovered while adding or
updating a resource.

	Parameters

	
	resource (krake.data.core.ResourceRef) – the resource added or updated that
triggered the exception.

	cycle (set [https://docs.python.org/3/library/stdtypes.html#set]) – the cycle of dependency relationships that has been discovered.

	
exception krake.controller.gc.DependencyException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Base class for dependency exceptions.

	
class krake.controller.gc.DependencyGraph

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Representation of the dependencies of all Krake resources by an acyclic
directed graph. This graph can be used to get the dependents of any resource that
the graph received.

If an instance of a resource A depends on a resource B, A will have B in its owner
list. In this case,
* A depends on B
* B is a dependency of A
* A is a dependent of B

The nodes of the graph are krake.data.core.ResourceRef, created from the
actual resources. The edges are directed links from a dependency to its dependents.

krake.data.core.ResourceRef are used instead of the resource directly, as
they are hashable and can be used as key of a dictionary. Otherwise, we would need
to make any newly added resource as hashable for the sake of the dependency graph.

The actual resources are still referenced in the _resources. It allows the
access to the actual owners of a resource, not their
krake.data.core.ResourceRef.

	
add_resource(resource, owners, check_cycles=True)

	Add a resource and its dependencies relationships to the graph.

	Parameters

	
	resource (krake.data.core.ResourceRef) – the resource to add to the graph.

	owners (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of owners (dependencies) of the resource.

	check_cycles (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if False, does not check if adding the
resource creates a cycle, and simply add it.

	
get_direct_dependents(resource)

	Get the dependents of a resource, but only the ones directly dependent, no
recursion is performed.

	Parameters

	resource (krake.data.core.ResourceRef) – the resource for which the search
will be performed.

	Returns

	
	the list of krake.data.core.ResourceRef to the dependents

	of the given resource (=that depends on the resource).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
remove_resource(resource, check_dependents=True)

	If a resource has no dependent, remove it from the dependency graph,
and from the dependents of other resources.

	Parameters

	
	resource (krake.data.core.ResourceRef) – the resource to remove.

	check_dependents (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if False, does not check if the resource
to remove has dependents, and simply remove it along with the
dependents.

	Raises

	ResourceWithDependentsException – if the resource to remove has dependents.

	
update_resource(resource, owners)

	Update the dependency relationships of a resource on the graph.

	Parameters

	
	resource (krake.data.core.ResourceRef) – the resource whose ownership may
need to be modified.

	owners (list [https://docs.python.org/3/library/stdtypes.html#list]) – list of owners (dependencies) of the resource.

	
class krake.controller.gc.GarbageCollector(api_endpoint, worker_count=10, loop=None, ssl_context=None, debounce=0)

	Bases: krake.controller.Controller

Controller responsible for marking the dependents
of a resource as deleted, and for deleting all resources without any finalizer.

	Parameters

	
	api_endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to the API

	worker_count (int [https://docs.python.org/3/library/functions.html#int], optional) – the amount of worker function that should be
run as background tasks.

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], optional) – if given, this context will be
used to communicate with the API endpoint.

	debounce (float [https://docs.python.org/3/library/functions.html#float], optional) – value of the debounce for the
WorkQueue.

	
cleanup()

	Unregister all background tasks that are attributes.

	
get_api_method(reference, verb)

	Retrieve the client method of the API of the given resource to do the given
action.

	Parameters

	
	reference (any) – a resource or reference to a resource for which a method
of its API needs to be selected.

	verb (str [https://docs.python.org/3/library/stdtypes.html#str]) – the verb describing the action for which the method should be
returned.

	Returns

	
	a method to perform the given action on the given resource

	(through its client).

	Return type

	callable

	
handle_resource(run_once=False)

	Infinite loop which fetches and hand over the resources to the right
coroutine. This function is meant to be run as background task.

	Parameters

	run_once (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the function only handles one resource,
then stops. Otherwise, continue to handle each new resource on the
queue indefinitely.

	
static is_in_deletion(resource)

	Check if a resource needs to be deleted or not.

	Parameters

	resource (krake.data.serializable.ApiObject) – the resource to check.

	Returns

	True if the given resource is in deletion state, False otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
on_received_deleted(resource)

	To be called when a resource is deleted on the API. Remove the resource
from the dependency graph and add its dependencies to the Worker queue.

	Parameters

	resource (krake.data.serializable.ApiObject) – the deleted resource.

	
on_received_new(resource)

	To be called when a resource is received for the first time by the garbage
collector. Add the resource to the dependency graph and handle the resource if
accepted.

If a cycle is detected when adding the resource, all resources of the cycle are
removed.

	Parameters

	resource (krake.data.serializable.ApiObject) – the newly added resource.

	
on_received_update(resource)

	To be called when a resource is updated on the API. Update the resource on
the dependency graph and handle the resource if accepted.

If a cycle is detected when adding the resource, all resources of the cycle are
removed.

	Parameters

	resource (krake.data.serializable.ApiObject) – the updated resource.

	
prepare(client)

	Start all API clients that the controller will be using. Create all
necessary coroutines and register them as background tasks that will be
started by the Controller.

	Parameters

	client (krake.client.Client) – the base client to use for the API client
to connect to the API.

	
resource_received(resource)

	Core functionality of the garbage collector. Mark the given resource’s
direct dependents as to be deleted, or remove the deletion finalizer if the
resource has no dependent.

	Parameters

	resource (krake.data.serializable.ApiObject) – a resource in deletion
state.

	
exception krake.controller.gc.ResourceWithDependentsException(dependents, *args)

	Bases: krake.controller.gc.DependencyException

Raise when an attempt to remove a resource from the dependency graph implies
removing a resource that has still dependents, and thus should not be removed if
the integrity of the dependency graph needs to be kept.

For instance: If B depends on A, A should be removed.

	Parameters

	dependents (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of dependents that are now orphaned.

Controller Magnum

Module for Krake controller responsible for managing Magnum cluster resources and
creating their respective Kubernetes cluster. It connects to the Magnum service of the
Project on which a MagnumCluster has been scheduled.

python -m krake.controller.magnum --help

Configuration is loaded from the controllers.scheduler section:

api_endpoint: http://localhost:8080
worker_count: 5
debounce: 1.0
poll_interval: 30

tls:
 enabled: false
 client_ca: tmp/pki/ca.pem
 client_cert: tmp/pki/system:magnum.pem
 client_key: tmp/pki/system:magnum-key.pem

log:
 ...

	
exception krake.controller.magnum.CreateFailed(message)

	Bases: krake.controller.ControllerError

Raised in case the creation of a Magnum cluster failed.

	
exception krake.controller.magnum.DeleteFailed(message)

	Bases: krake.controller.ControllerError

Raised in case the deletion of a Magnum cluster failed.

	
exception krake.controller.magnum.InvalidClusterTemplateType(message)

	Bases: krake.controller.ControllerError

Raised in case the given Magnum template is not a template for a Kubernetes
cluster.

	
class krake.controller.magnum.MagnumClusterController(*args, worker_count=5, poll_interval=30, **kwargs)

	Bases: krake.controller.Controller

The Magnum controller receives the MagnumCluster resources from the API and acts
on it, by creating, updating or deleting their actual cluster counterparts. It uses
the OpenStack Magnum client for this purpose.

	Parameters

	
	api_endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL to the API

	loop (asyncio.AbstractEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop], optional) – Event loop that should be
used.

	ssl_context (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], optional) – if given, this context will be
used to communicate with the API endpoint.

	debounce (float [https://docs.python.org/3/library/functions.html#float], optional) – value of the debounce for the
WorkQueue.

	worker_count (int [https://docs.python.org/3/library/functions.html#int], optional) – the amount of worker function that should be
run as background tasks.

	poll_interval (float [https://docs.python.org/3/library/functions.html#float]) – time in second before two attempts to modify a Magnum
cluster (creation, deletion, update, change from FAILED state…).

	
cleanup()

	Unregister all background tasks that are attributes.

	
consume(run_once=False)

	Continuously retrieve new elements from the worker queue to be processed.

	Parameters

	run_once (bool [https://docs.python.org/3/library/functions.html#bool], optional) – if True, the function only handles one resource,
then stops. Otherwise, continue to handle each new resource on the
queue indefinitely.

	
create_magnum_client(cluster)

	Create a client to communicate with the Magnum service API for the given
Magnum cluster. The specifications defined in the OpenStack project of the
cluster are used to create the client.

	Parameters

	cluster (krake.data.openstack.MagnumCluster) – the cluster whose project’s
specifications will be used to connect to the Magnum service.

	Returns

	
	the Magnum client to use to connect to the Magnum service on

	the project of the given Magnum cluster.

	Return type

	MagnumV1Client

	
delete_magnum_cluster(cluster)

	Initiate the deletion of the actual given Magnum cluster, and wait for its
deletion. The finalizer specific to the Magnum Controller is also removed from
the Magnum cluster resource.

	Parameters

	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster that needs
to be deleted.

	
on_creating(cluster, magnum)

	Called when a Magnum cluster with the CREATING state needs reconciliation.

Watch over a Magnum cluster currently being created on its scheduled OpenStack
project, and updates the corresponding Kubernetes cluster created in the API.

As the Magnum cluster is in a stable state at the end, no further processing
method is needed to return.

	Parameters

	
	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster that needs
to be processed.

	magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

	
on_pending(cluster, magnum)

	Called when a Magnum cluster with the PENDING state needs reconciliation.

Initiate the creation of a Magnum cluster using the registered Magnum template,
but does not ensure that the creation succeeded.

	Parameters

	
	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster to actually
create on its scheduled OpenStack project.

	magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

	Returns

	
	the next function to be called, as the Magnum cluster changed its

	state. In this case, the Magnum cluster has now the CREATING state, thus
the function returned is on_creating().

	Return type

	callable

	
on_reconciling(cluster, magnum)

	Called when a Magnum cluster with the RECONCILING state needs reconciliation.

Watch over a Magnum cluster already created on its scheduled OpenStack project,
and updates the corresponding Kubernetes cluster created in the API.

As the Magnum cluster is in a stable state at the end, no further processing
method is needed to return.

	Parameters

	
	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster that needs
to be processed.

	magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

	
on_running(cluster, magnum)

	Called when a Magnum cluster with the RUNNING state needs reconciliation.

If the Magnum cluster needs to be resized, initiate the resizing. Otherwise,
updates the corresponding Kubernetes cluster created in the API.

	Parameters

	
	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster that needs
to be processed.

	magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

	Returns

	
	the next function to be called, as the Magnum cluster changed its

	state. In the case of resizing, the Magnum cluster has now the
RECONCILING state, thus the function returned is on_creating().
Otherwise, as the state is stable at the end, no further processing
is needed and None is returned.

	Return type

	callable

	
prepare(client)

	Start all API clients that the controller will be using. Create all
necessary coroutines and register them as background tasks that will be
started by the Controller.

	Parameters

	client (krake.client.Client) – the base client to use for the API client
to connect to the API.

	
process_cluster(cluster)

	Process a Magnum cluster: if the given cluster is marked for deletion, delete
the actual cluster. Otherwise, start the reconciliation between a Magnum cluster
spec and its state.

Handle any ControllerError or the supported OpenStack error that are
raised during the processing.

	Parameters

	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster to process.

	
reconcile_kubernetes_resource(cluster, magnum)

	Create or update the Krake resource of the Kubernetes cluster that was
created from a given Magnum cluster.

	Parameters

	
	cluster (krake.data.openstack.MagnumCluster) – the Kubernetes cluster will be
created using the specifications of this Magnum cluster.

	magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

	Raises

	ClientResponseError – when checking if the Kubernetes cluster resource
already exists, raise if any HTTP error except 404 is raised.

	
reconcile_magnum_cluster(cluster)

	Depending on the state of the given Magnum cluster, start the rapprochement
of the wanted state of the cluster to the desired one.

	Parameters

	cluster (krake.data.openstack.MagnumCluster) – the cluster whose actual state
will be modified to match the desired one.

	
wait_for_running(cluster, magnum)

	Await for an actual Magnum cluster to be in a stable state, that means, when
its creation or update is finished.

	Parameters

	
	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster on which
an operation is performed that needs to be awaited.

	magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

	Raises

	ControllerError – if the operation on the cluster failed, a corresponding
error will be raised (for instance CreateFailed in case the creation of
the cluster failed).

	
exception krake.controller.magnum.ReconcileFailed(message)

	Bases: krake.controller.ControllerError

Raised in case the update of a Magnum cluster failed.

	
krake.controller.magnum.concurrent(fn)

	Decorator function to turn a synchronous function into an asynchronous coroutine
that runs in another thread, that can be awaited and thus does not block the main
asyncio loop. It is particularly useful for synchronous tasks which requires a long
time to be run concurrently to the main asyncio loop.

Example

@concurrent
def my_function(args_1, arg2=value):
 # long synchronous processing...
 return result

await my_function(value1, arg2=value2) # function run in another thread

	Parameters

	fn (callable) – the function to run in parallel from the main loop.

	Returns

	
	decorator around the given function. The returned callable is an

	asyncio coroutine.

	Return type

	callable

	
krake.controller.magnum.create_client_certificate(client, cluster, csr)

	Create and get a certificate for the given Magnum cluster.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster for which a
kubeconfig file will be created.

	csr (str [https://docs.python.org/3/library/stdtypes.html#str]) – the certificate signing request (CSR) to use on the Magnum service
for the creation of the certificate.

	Returns

	the generated certificate.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
krake.controller.magnum.create_magnum_cluster(client, cluster)

	Create an actual Magnum cluster by connecting to the the Magnum service.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the cluster to create.

	Returns

	the cluster created by the Magnum service.

	Return type

	magnumclient.v1.clusters.Cluster

	
krake.controller.magnum.delete_magnum_cluster(client, cluster)

	Delete the actual Magnum cluster that corresponds to the given resource.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the cluster to delete.

	Returns

	the cluster deleted by the Magnum service.

	Return type

	magnumclient.v1.clusters.Cluster

	
krake.controller.magnum.format_openstack_error(error)

	Create a more readable error message using OpenStack specific errors.

	Parameters

	error (BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]) – the exception whose information is used to create a
message.

	Returns

	the generated error message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
krake.controller.magnum.generate_magnum_cluster_name(cluster)

	Create a unique name for a Magnum cluster from its metadata. The name has the
following structure: “<namespace>-<name>-<random_lowercase_digit_string>”. Any
special character that the Magnum service would see as invalid will be replaced.

	Parameters

	cluster (krake.data.openstack.MagnumCluster) – the cluster to use to create a
name.

	Returns

	the name generated.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
krake.controller.magnum.make_csr(key_size=4096)

	Generates a private key and corresponding certificate and certificate
signing request.

	Parameters

	key_size (int [https://docs.python.org/3/library/functions.html#int]) – Length of private key in bits

	Returns

	private key, certificate signing request (CSR)

	Return type

	(str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])

	
krake.controller.magnum.make_keystone_session(project)

	Create an OpenStack Keystone session using the authentication information of the
given project resource.

	Parameters

	project (krake.data.openstack.Project) – the OpenStack project to use for getting
the credentials and endpoint.

	Returns

	the Keystone session created.

	Return type

	Session

	
krake.controller.magnum.make_kubeconfig(client, cluster)

	Create a kubeconfig for the Kubernetes cluster associated with the given Magnum
cluster. For this process, it uses (non exhaustively) the name, address and
certificates associated with it.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster for which a
kubeconfig will be created.

	Returns

	the kubeconfig created, returned as a dictionary.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
krake.controller.magnum.make_magnum_client(project)

	Create a Magnum client to connect to the given OpenStack project.

	Parameters

	project (krake.data.openstack.Project) – the project to connect to.

	Returns

	
	the client to connect to the Magnum service of the given

	project.

	Return type

	MagnumV1Client

	
krake.controller.magnum.randstr(length=7)

	Create a random string of lowercase and digit character of the given length.

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – specifies how many characters should be present in the returned
string.

	Returns

	the string randomly generated.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
krake.controller.magnum.read_ca_certificate(client, cluster)

	Get the certificate authority used by the given Magnum cluster.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster for which the
certificate authority will be retrieved.

	Returns

	the certificate authority of the given cluster.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
krake.controller.magnum.read_magnum_cluster(client, cluster)

	Read the actual information of the given Magnum cluster resource.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the resource whose actual
cluster state will be read.

	Returns

	
	the current information regarding the given

	Magnum cluster.

	Return type

	magnumclient.v1.clusters.Cluster

	
krake.controller.magnum.read_magnum_cluster_template(client, cluster)

	Get the actual template associated with the one specified in the given Magnum
cluster resource.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the template given is the one
specified by this Magnum cluster.

	Returns

	magnumclient.v1.cluster_templates.ClusterTemplate

	
krake.controller.magnum.resize_magnum_cluster(client, cluster)

	Update the given Magnum cluster by changing its node count.

	Parameters

	
	client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

	cluster (krake.data.openstack.MagnumCluster) – the cluster to resize.

	Returns

	the cluster updated by the Magnum service.

	Return type

	magnumclient.v1.clusters.Cluster

Data Abstraction

Data abstraction module for all REST resources used by the Krake API. This
module provides common data definitions for krake.api and
krake.client.

The core functionality is provided by serializable providing a Python
API for declarative definitions of data models together with serializing and
deserializing functionality.

Domain-specific models are defined in corresponding submodules, e.g.
Kubernetes-related data models are defined in kubernetes.

	
class krake.data.Key(template, attribute=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Etcd key template using the same syntax as Python’s standard format
strings for parameters.

Example

key = Key("/books/{namespaces}/{isbn}")

The parameters are substituted by in the corresponding methods by either
attributes of the passed object or additional keyword arguments.

	Parameters

	
	template (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key template with format string-like parameters

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Load attributes in format_object()
from this attribute of the passed object.

	
format_kwargs(**kwargs)

	Create a key from keyword arguments

	Parameters

	**kwargs – Keyword arguments for parameter substitution

	Returns

	Key from the key template with all parameters substituted by
the given keyword arguments.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
format_object(obj)

	Create a key from a given object

If attribute is given, attributes are loaded from this attribute
of the object rather than the object itself.

	Parameters

	obj (object [https://docs.python.org/3/library/functions.html#object]) – Object from which attributes are looked up

	Returns

	Key from the key template with all parameters substituted by
attributes loaded from the given object.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	AttributeError [https://docs.python.org/3/library/exceptions.html#AttributeError] – If a required parameter is missing

	
matches(key)

	Check if a given key matches the template

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key that should be checked

	Returns

	True of the given key matches the key template

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
prefix(**kwargs)

	Create a partial key (prefix) for a given object.

	Parameters

	**kwargs – Parameters that will be used for substitution

	Returns

	Partial key from the key template with some parameters
substituted

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If a parameter is passed as keyword argument but a
preceding parameter is not given.

	
krake.data.persistent(key)

	Decorator factory for marking a class with a template that should be
used as etcd key.

The passed template will be converted into a Key instance using
the metadata attribute and will be assigned to the __etcd_key__
attribute of the decorated class.

Example

from krake.data import persistent
from krake.data.serializable import Serializable, persistent
from krake.data.core import Metadata

@persistent("/books/{name}")
class Book(Serializable):
 metadata: Metadata

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Etcd key template. Parameters will be loaded from the
metadata attribute of the decorated class.

	Returns

	Decorator that can be used to assign an __etcd_key__
attribute to the decorated object based on the passed key template.

	Return type

	callable

This module defines a declarative API for defining data models that are
JSON-serializable and JSON-deserializable.

	
class krake.data.serializable.ApiObject(**kwargs)

	Bases: krake.data.serializable.Serializable

Base class for objects manipulated via REST API.

api and kind should be defined as simple string class
:variables. They are automatically converted into dataclass fields with
:corresponding validators.

	
api

	Name of the API the object belongs to

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
kind

	String name describing the kind (type) of the object

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example

from krake.data.serializable import ApiObject
from krake.data.core import Metadata, Status

class Book(ApiObject):
 api: str = "shelf" # The book resource belongs to the "shelf api"
 kind: str = "Book"

 metadata: Metadata
 spec: BookSpec
 status: Status

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.serializable.ModelizedSchema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: marshmallow.schema.Schema [https://marshmallow.readthedocs.io/en/stable/marshmallow.schema.html#marshmallow.schema.Schema]

Simple marshmallow schema constructing Python objects in a
post_load hook.

Subclasses can specify a callable attribute __model__ which is
called with all deserialized attributes as keyword arguments.

The Meta.unknown field is set to avoid considering unknown fields
during validation. It mostly prevents create tests from failing.

	
__model__

	Model factory returning a new instance of a
specific model

	Type

	callable

	
class krake.data.serializable.PolymorphicContainer(**kwargs)

	Bases: krake.data.serializable.Serializable

Base class for polymorphic serializable objects.

The polymorphic serializable has a string attribute type which is
used as discriminator for the different types. There is an attribute named
exactly like the value of the type attribute containing the
deserialized subtype.

Every new subclass will create its own Schema attribute. This
means every subclass has its own internal subtype registry.

	
Schema

	Schema that will be used for
(de-)serialization of the class.

	Type

	PolymorphicContainerSchema

Example:

from krake.data.serializable import Serializable, PolymorphicContainer

class ValueSpec(PolymorphicContainer):
 pass

@ProviderSpec.register("float")
class FloatSpec(Serializable):
 min: float
 max: float

@ProviderSpec.register("bool")
class BoolSpec(Serializable):
 pass

Deserialization
spec = ProviderSpec.deserialize({
 "type": "float",
 "float": {
 "min": 0,
 "max": 1.0,
 },
})
assert isinstance(spec.float, FloatSpec)

Serialization
assert ProviderSpec(type="bool", bool=BoolSpec()).serialize() == {
 "type": bool,
 "bool": {},
}

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
classmethod register(name)

	Decorator function for registering a class under a unique name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name that will be used as value for the type
field to identify the decorated class.

	Returns

	Decorator that will register the decorated class in
the polymorphic schema (see
PolymorphicContainerSchema.register()).

	Return type

	callable

	
update(overwrite)

	Update the polymorphic container with fields from the overwrite
object.

A reference to the polymorphic field – the field called like the value
of the type attribute – of the overwrite object is assigned to
the current object even if the types of the current object and the
overwrite object are identical.

	Parameters

	overwrite (Serializable) – Serializable object will be merged with
the current object.

	
class krake.data.serializable.PolymorphicContainerSchema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: marshmallow.schema.Schema [https://marshmallow.readthedocs.io/en/stable/marshmallow.schema.html#marshmallow.schema.Schema]

Schema that is used by PolymorphicContainer

It declares just one string field type which is used as
discriminator for the different types.

There should be a field called exactly like the type. The value of this
field is passed to the registered schema for deserialization.

type: float
float:
 min: 0
 max: 1.0

type: int
int:
 min: 0
 max: 100

Every subclass will create its own internal subtype registry.

	
classmethod register(type, dataclass)

	Register a Serializable for the given type string

	Parameters

	
	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type name that should be used as discriminator

	dataclass (object [https://docs.python.org/3/library/functions.html#object]) – Dataclass that will be used when the type
field equals the specified name.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the type name is already registered

	
class krake.data.serializable.Serializable(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for declarative serialization API.

Fields can be marked with the metadata attribute of
dataclasses.Field [https://docs.python.org/3/library/dataclasses.html#dataclasses.Field]. Currently the following markers exists:

	readonly

	A field marked as “readonly” is automatically generated by the
API server and not controlled by the user. The user cannot update
this field. The corresponding marshmallow field allows None as
valid value.

	subresource

	A field marked as “subresource” is ignored in update request of
a resource. Extra REST call are required to update a subresource.
A well known subresource is “status”.

All field metadata attributes are also passed to the
marshmallow.fields.Field [https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field] instance. This means the user can
control the generated marshmallow field with the metadata attributes.

The class also defines a custom __init__ method accepting every
attribute as keyword argument in arbitrary order in contrast to the
standard init method of dataclasses.

Example

from krake.data.serializable import Serializable

class Book(Serializable):
 author: str
 title: str
 isbn: str = fields(metadata={"readonly": True})

assert hasattr(Book, "Schema")

There are cases where multiple levels needs to be validated together. In
this case, the validates metadata key for a single field is not
sufficient anymore. One solution is to overwrite the auto-generated schema
by a custom schema using the
marshmallow.decorators.validates_schema() [https://marshmallow.readthedocs.io/en/stable/marshmallow.decorators.html#marshmallow.decorators.validates_schema] decorator.

Another solution is leveraging the __post_init__() method of
dataclasses. The fields can be validated in this method and a raised
marshmallow.ValidationError [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.ValidationError] will propagate to the Schema
deserialization method.

from marshmallow import ValidationError

class Interval(Serializable):
 max: int
 min: int

 def __post_init__(self):
 if self.min > self.max:
 raise ValidationError("'min' must not be greater than 'max'")

This will raise a ValidationError
interval = Interval.deserialize({"min": 2, "max": 1})

	
Schema

	Schema for this dataclass

	Type

	ModelizedSchema

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
__post_init__()

	The __init__() method calls this method after all fields are
initialized.

It is mostly useful for schema-level validation (see above).

For now, Serializable does not support init-only variables
because they do not make much sense for object stored in a database.
This means no additional parameters are passed to this method.

	
classmethod deserialize(data, creation_ignored=False)

	Loading an instance of the class from JSON-encoded data.

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – JSON dictionary that should be deserialized.

	creation_ignored (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, all attributes not needed at the
creation are ignored. This contains the read-only and subresources,
which can only be created by the API.

	Raises

	marshmallow.ValidationError [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.ValidationError] – If the data is invalid

	
classmethod fields_ignored_by_creation()

	Return the name of all fields that do not have to be provided during the
creation of an instance.

	Returns

	Set of name of fields that are either subresources or read-only, or
nested read-only fields.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
classmethod readonly_fields(prefix=None)

	Return the name of all read-only fields. Nested fields are returned
with dot-notation, for lists also. In this case, the argument is the one taken
into account for looking at the read-only fields.

Example:

class Comment(Serializable):
 id: int = field(metadata={"readonly": True})
 content: str

class BookMetadata(Serializable):
 name: str = field(metadata={"readonly": True})
 published: datetime = field(metadata={"readonly": True})
 last_borrowed: datetime

class Book(Serializable):
 id: int = field(metadata={"readonly": True})
 metadata: BookMetadata
 status: str
 comments: List[Comment]

expected = {'id', 'metadata.name', 'metadata.published', 'comment.id'}
assert Book.readonly_fields() == expected

	Parameters

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Used for internal recursion

	Returns

	Set of field names that are marked as with readonly in their
metadata.

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
serialize(creation_ignored=False)

	Serialize the object using the generated Schema.

	Parameters

	creation_ignored (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, all attributes not needed at the
creation are ignored. This contains the read-only and subresources,
which can only be created by the API.

	Returns

	JSON representation of the object

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod subresources_fields()

	Return the name of all fields that are defined as subresource.

	Returns

	
	Set of field names that are marked as subresource in their

	metadata

	Return type

	set [https://docs.python.org/3/library/stdtypes.html#set]

	
update(overwrite)

	Update data class fields with corresponding fields from the
overwrite object.

If a field is marked as _subresource_ or _readonly_ it is
not modified. If a field is marked as _immutable_ and there is
an attempt to update the value, the ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.
Otherwise, attributes from overwrite will replace
attributes from the current object.

The update() must ignore the _subresource_ and _readonly_ fields,
to avoid accidentally overwriting e.g. status fields in
read-modify-write scenarios.

The function works recursively for nested Serializable
attributes which means the update() method of the attribute will
be used. This means the identity of a Serializable attribute
will not change unless the current attribute or the overwrite
attribute is None [https://docs.python.org/3/library/constants.html#None].

All other attributes are updated by assigning references from the
overwrite attributes to the current object. This leads to a behavior
similar to “shallow copying” (see copy.copy() [https://docs.python.org/3/library/copy.html#copy.copy]). If the attribute
is mutable, e.g. list [https://docs.python.org/3/library/stdtypes.html#list] or dict [https://docs.python.org/3/library/stdtypes.html#dict], the attribute in the
current object will reference the same object as in the overwrite
object.

	Parameters

	overwrite (Serializable) – Serializable object will be merged with
the current object.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If there is an attempt to update an _immutable_ field.

	
class krake.data.serializable.SerializableMeta

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass for Serializable. It automatically converts a
specified class into an dataclass (see dataclasses.dataclass() [https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass]) and
creates a corresponding marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema] class. The schema
class is assigned to the Schema attribute.

	
krake.data.serializable.field_for_schema(type_, default=<dataclasses._MISSING_TYPE object>, **metadata)

	Create a corresponding marshmallow.fields.Field [https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field] for the passed
type.

If metadata contains marshmallow_field key, the value will be used
directly as field.

If type_ has a Schema attribute which should be a subclass of
marshmallow.Schema [https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema] a :class.`marshmallow.fields.Nested` field
will be returned wrapping the schema.

If type_ has a Field attribute which should be a subclass of
marshmallow.fields.Field [https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field] an instance of this attribute will be
returned.

	Parameters

	
	type (type [https://docs.python.org/3/library/functions.html#type]) – Type of the field

	default (optional) – Default value of the field

	**metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any additional keyword argument that will be passed
to the field

	Returns

	Serialization field for the passed type

	Return type

	marshmallow.fields.Field [https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field]

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If the marshmallow field cannot not be determined
for the passed type

	
krake.data.serializable.is_base_generic(cls)

	Detects generic base classes, for example List but not
List[int].

	Parameters

	cls – Type annotation that should be checked

	Returns

	True if the passed type annotation is a generic base.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
krake.data.serializable.is_generic(cls)

	Detects any kind of generic, for example List or List[int]. This
includes “special” types like Union and Tuple - anything that’s subscriptable,
basically.

	Parameters

	cls – Type annotation that should be checked

	Returns

	True if the passed type annotation is a generic.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
krake.data.serializable.is_generic_subtype(cls, base)

	Check if a given generic class is a subtype of another generic class

If the base is a qualified generic, e.g. List[int], it is checked if
the types are equal.
If the base or cls does not have the attribute __origin__, e.g. Union, Optional,
it is checked, if the type of base or cls is equal to the opponent. This is done
for every possible case.
If the base and cls have the attribute __origin__, e.g. list [https://docs.python.org/3/library/stdtypes.html#list]
for typing.List [https://docs.python.org/3/library/typing.html#typing.List], it is checked if the class is equal to the
original type of the generic base class.

	Parameters

	
	cls – Generic type

	base – Generic type that should be the base of the given generic type.

	Returns

	True of the given generic type is a subtype of the given base
generic type.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
krake.data.serializable.is_qualified_generic(cls)

	Detects generics with arguments, for example List[int] but not
List

	Parameters

	cls – Type annotation that should be checked

	Returns

	True if the passed type annotation is a qualified generic.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

.

	
class krake.data.core.BaseMetric(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.BaseMetricsProvider(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Conflict(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.CoreMetadata(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.GlobalMetric(**kwargs)

	Bases: krake.data.core.BaseMetric

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.GlobalMetricList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.GlobalMetricsProvider(**kwargs)

	Bases: krake.data.core.BaseMetricsProvider

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.GlobalMetricsProviderList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.KafkaSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

Specifications to connect to a KSQL database, and retrieve a specific row from a
specific table.

	
comparison_column

	name of the column where the value will be compared to
the metric name, to select the right metric.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
value_column

	name of the column where the value of a metric is stored.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
table

	the name of the KSQL table where the metric is defined.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
url

	endpoint of the KSQL database.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.ListMetadata(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Metadata(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Metric(**kwargs)

	Bases: krake.data.core.BaseMetric

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricRef(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricSpecProvider(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricsProvider(**kwargs)

	Bases: krake.data.core.BaseMetricsProvider

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricsProviderList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.MetricsProviderSpec(**kwargs)

	Bases: krake.data.serializable.PolymorphicContainer

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.PolymorphicContainerSchema

	
class krake.data.core.PrometheusSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Reason(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.ReasonCode

	Bases: enum.IntEnum [https://docs.python.org/3/library/enum.html#enum.IntEnum]

An enumeration.

	
class krake.data.core.ResourceRef(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Role(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.RoleBinding(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.RoleBindingList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.RoleList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.RoleRule(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.StaticSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Status(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.Verb

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
class krake.data.core.WatchEvent(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.core.WatchEventType

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
krake.data.core.resource_ref(resource)

	Create a ResourceRef from a ApiObject

	Parameters

	resource (serializable.ApiObject) – API object that should be
referenced

	Returns

	Corresponding reference to the API object

	Return type

	ResourceRef

	
krake.data.core.validate_key(key)

	Validate the given key against the corresponding regular expression.

	Parameters

	key – the string to validate

	Raises

	ValidationError – if the given key is not conform to the regular expression.

	
krake.data.core.validate_value(value)

	Validate the given value against the corresponding regular expression.

	Parameters

	value – the string to validate

	Raises

	ValidationError – if the given value is not conform to the regular expression.

	
class krake.data.infrastructure.Cloud(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.CloudBinding(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.CloudList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.CloudSpec(**kwargs)

	Bases: krake.data.serializable.PolymorphicContainer

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.PolymorphicContainerSchema

	
class krake.data.infrastructure.CloudState

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
class krake.data.infrastructure.CloudStatus(**kwargs)

	Bases: krake.data.serializable.Serializable

Status subresource of GlobalCloud and Cloud.

	
state

	Current state of the cloud.

	Type

	CloudState

	
metrics_reasons

	Mapping of the name of the metrics for
which an error occurred to the reason for which it occurred.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Reason]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.GlobalCloud(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
__post_init__()

	Method automatically ran at the end of the __init__() method, used to
validate dependent attributes.

	Validations:

	
	A non-namespaced GlobalCloud resource cannot reference the namespaced

InfrastructureProvider resource, see #499 for details

	A non-namespaced GlobalCloud resource cannot reference the namespaced

Metric resource, see #499 for details

	Note: This validation cannot be achieved directly using the validate

	metadata, since validate must be a zero-argument callable, with
no access to the other attributes of the dataclass.

	
class krake.data.infrastructure.GlobalCloudList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.GlobalInfrastructureProvider(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.GlobalInfrastructureProviderList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.ImSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

IMSpec should contain access data to the IM provider instance.

	
url

	endpoint of the IM provider instance.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
username

	IM provider instance username.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
password

	IM provider instance password.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
token

	IM provider instance token.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
__post_init__()

	Method automatically ran at the end of the __init__() method, used to
validate dependent attributes.

Validations:
- At least one of the attributes from the following should be defined:

	username and password

	token

	
class krake.data.infrastructure.InfrastructureProvider(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.InfrastructureProviderList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.InfrastructureProviderRef(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.InfrastructureProviderSpec(**kwargs)

	Bases: krake.data.serializable.PolymorphicContainer

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.PolymorphicContainerSchema

	
class krake.data.infrastructure.OpenstackAuthMethod(**kwargs)

	Bases: krake.data.serializable.PolymorphicContainer

Container for the different authentication strategies of OpenStack
Identity service (Keystone).

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.PolymorphicContainerSchema

	
class krake.data.infrastructure.OpenstackSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.Password(**kwargs)

	Bases: krake.data.serializable.Serializable

Data for the password authentication strategy of the OpenStack
identity service (Keystone).

	
version

	OpenStack identity API version used for authentication

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
user

	OpenStack user that will be used for authentication

	Type

	UserReference

	
project

	OpenStack project that will be used by Krake

	Type

	ProjectReference

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.ProjectReference(**kwargs)

	Bases: krake.data.serializable.Serializable

Reference to the OpenStack project that is used by the Password
authentication strategy.

	
name

	Name or UUID of the OpenStack project

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
domain_id

	Domain ID of the OpenStack project.
Defaults to default

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
comment

	Arbitrary string for user-defined
information, e.g. semantic names

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.infrastructure.UserReference(**kwargs)

	Bases: krake.data.serializable.Serializable

Reference to the OpenStack user that is used by the Password
authentication strategy.

	
username

	Username or UUID of the OpenStack user

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
password

	Password of the OpenStack user

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
domain_name

	Domain name of the OpenStack user.
Defaults to Default

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
comment

	Arbitrary string for user-defined
information, e.g. semantic names

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

Data model definitions for Kubernetes-related resources

	
class krake.data.kubernetes.Application(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ApplicationComplete(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ApplicationList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ApplicationShutdown(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ApplicationSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

Spec subresource of Application.

	
manifest

	List of Kubernetes resources to create. This attribute
is managed by the user.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
tosca

	The to be created TOSCA template.
A TOSCA template should be defined as a python dict or with the
URL, where the template is located.
This attribute is managed by the user.

	Type

	Union[dict [https://docs.python.org/3/library/stdtypes.html#dict], str [https://docs.python.org/3/library/stdtypes.html#str]], optional

	
csar

	The to be created CSAR archive.
A CSAR file should be defined with the URL, where the
archive is located.
This attribute is managed by the user.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
observer_schema

	List of dictionaries of fields that
should be observed by the Kubernetes Observer. This attribute is managed by
the user. Using this attribute as a basis, the Kubernetes Controller
generates the status.mangled_observer_schema.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]], optional

	
constraints

	Scheduling constraints

	Type

	Constraints, optional

	
hooks

	List of enabled hooks

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], optional

	
shutdown_grace_time

	timeout in seconds for the shutdown hook

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
backoff

	multiplier applied to backoff_delay between attempts.
default: 1 (no backoff)

	Type

	field, optional

	
backoff_delay

	delay [s] between attempts. default: 1

	Type

	field, optional

	
backoff_limit

	a maximal number of attempts,
default: -1 (infinite)

	Type

	field, optional

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
__post_init__()

	Method automatically ran at the end of the __init__() method, used to
validate dependent attributes.

Validations:
1. At least one of the attributes from the following should be defined:
- manifest
- tosca
- csar
If the user specified multiple attributes at once, the manifest
has the highest priority, after that tosca and csar.

2. If a custom observer_schema and manifest are specified
by the user, the observer_schema needs to be validated, i.e. verified
that resources are correctly identified and refer to resources defined in
manifest, that fields are correctly identified and that all special
control dictionaries are correctly defined.

	Note: These validations cannot be achieved directly using the validate

	metadata, since validate must be a zero-argument callable, with
no access to the other attributes of the dataclass.

	
class krake.data.kubernetes.ApplicationState

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
class krake.data.kubernetes.ApplicationStatus(**kwargs)

	Bases: krake.data.core.Status

Status subresource of Application.

	
state

	Current state of the application

	Type

	ApplicationState

	
container_health

	Specific details of the application

	Type

	ContainerHealth

	
kube_controller_triggered

	Timestamp that represents the
last time the current version of the Application was scheduled (version here
meaning the Application after an update). It is only updated after the
update of the Application led to a rescheduling, or at the first scheduling.
It is used to keep a strict workflow between the Scheduler and
Kubernetes Controller: the first one should always handle an Application
creation or update before the latter. Only after this field has been updated
by the Scheduler to be higher than the modified timestamp can the
Kubernetes Controller handle the Application.

	Type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
scheduled

	Timestamp that represents the last time the
application was scheduled to a different cluster, in other words when
scheduled_to was modified. Thus, it is updated at the first binding to a
cluster, or during the binding with a different cluster. This represents the
timestamp when the current Application was scheduled to its current cluster,
even if it has been updated in the meantime.

	Type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
scheduled_to

	Reference to the cluster where the
application should run.

	Type

	ResourceRef

	
running_on

	Reference to the cluster where the
application is currently running.

	Type

	ResourceRef

	
services

	Mapping of Kubernetes service names to their public
endpoints.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
mangled_observer_schema

	Actual observer schema used by the
Kubernetes Observer, generated from the user inputs spec.observer_schema

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
last_observed_manifest

	List of Kubernetes resources observed on
the Kubernetes API.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
last_applied_manifest

	List of Kubernetes resources created via
Krake. The manifest is augmented by additional resources needed to be
created for the functioning of internal mechanisms, such as the “Complete
Hook”.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
complete_token

	Token to identify the “Complete Hook” request

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
complete_cert

	certificate for the identification of the “Complete Hook”.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
complete_key

	key for the certificate of the “Complete Hook”
identification.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
shutdown_token

	Token to identify the “Shutdown Hook” request

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
shutdown_cert

	certificate for the identification of the “Shutdown Hook”.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
shutdown_key

	key for the certificate of the “Shutdown Hook”
identification.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
shutdown_grace_period

	time period the shutdown method waits on after
the shutdown command was issued to an object

	Type

	datetime

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.CloudConstraints(**kwargs)

	Bases: krake.data.serializable.Serializable

Constraints for the Cloud to which this cluster is
scheduled.

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.Cluster(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterBinding(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterCloudConstraints(**kwargs)

	Bases: krake.data.serializable.Serializable

Constraints restricting the scheduling decision for a
Cluster.

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterConstraints(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterList(**kwargs)

	Bases: krake.data.serializable.ApiObject

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterNode(**kwargs)

	Bases: krake.data.serializable.Serializable

Cluster node subresource of ClusterStatus.

	
api

	Api version if the resource.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
kind

	Kind of the resource.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
status

	Current status of the cluster node.

	Type

	ClusterNodeStatus, optional

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterNodeCondition(**kwargs)

	Bases: krake.data.serializable.Serializable

Cluster node condition subresource of ClusterNodeStatus.

	
message

	Human readable message indicating details about last transition.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
reason

	A brief reason for the condition’s last transition.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
status

	Status of the condition, one of “True”, “False”, “Unknown”.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
type

	Type of node condition.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterNodeMetadata(**kwargs)

	Bases: krake.data.serializable.Serializable

Cluster node metadata subresource of ClusterNode.

	
name

	Name of the cluster node.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterNodeStatus(**kwargs)

	Bases: krake.data.serializable.Serializable

Cluster node status subresource of ClusterNode.

	
conditions

	List of current observed
node conditions.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][ClusterNodeCondition]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ClusterSpec(**kwargs)

	Bases: krake.data.serializable.Serializable

Spec subresource of Cluster

	
kubeconfig

	path to the kubeconfig file for the cluster to
register.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
custom_resources

	name of all custom resources that are available on
the current cluster.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
metrics

	metrics used on the cluster.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
backoff

	multiplier applied to backoff_delay between attempts.
default: 1 (no backoff)

	Type

	field, optional

	
backoff_delay

	delay [s] between attempts. default: 1

	Type

	field, optional

	
backoff_limit

	a maximal number of attempts,
default: -1 (infinite)

	Type

	field, optional

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
__post_init__()

	Method automatically ran at the end of the __init__() method, used to
validate dependent attributes.

Validations:
- At least one of the attributes from the following should be defined:

	kubeconfig

	tosca

	Note: This validation cannot be achieved directly using the validate

	metadata, since validate must be a zero-argument callable, with
no access to the other attributes of the dataclass.

	
class krake.data.kubernetes.ClusterState

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

An enumeration.

	
class krake.data.kubernetes.ClusterStatus(**kwargs)

	Bases: krake.data.core.Status

Status subresource of Cluster.

	
kube_controller_triggered

	Time when the Kubernetes controller was

	Type

	datetime

	
triggered. This is used to handle cluster state transitions.

	

	
state

	Current state of the cluster.

	Type

	ClusterState

	
metrics_reasons

	mapping of the name of the metrics for
which an error occurred to the reason for which it occurred.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Reason]

	
last_applied_tosca

	TOSCA template applied via
Krake.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
nodes

	list of cluster nodes.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][ClusterNode]

	
cluster_id

	UUID or name of the cluster (infrastructure) given by the
infrastructure provider

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
scheduled

	Timestamp that represents the last time the
cluster was scheduled to a cloud.

	Type

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
scheduled_to

	Reference to the cloud where the
cluster should run.

	Type

	ResourceRef

	
running_on

	Reference to the cloud where the
cluster is running.

	Type

	ResourceRef

	
retries

	Count of remaining retries to access the cluster. Is set
via the Attribute backoff in in ClusterSpec.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.Constraints(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
class krake.data.kubernetes.ContainerHealth(**kwargs)

	Bases: krake.data.serializable.Serializable

	
class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (), many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet = (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet = False, unknown: str | None = None)

	Bases: krake.data.serializable.ModelizedSchema

	
exception krake.data.kubernetes.ObserverSchemaError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Custom exception raised if the validation of the observer_schema fails

Client Reference

rok is a Python command line interface for the krake API
server. It can be used to manipulate any RESTful resource handled by Krake. It
can be used by end users as well as for administrative tasks.

Fixtures

Simple dependency injection module for rok inspired by pytest’s fixtures.

There is a simple registration decorator fixture() that can be used to
mark functions as fixtures. Functions using these fixtures can declare their
dependency with the use() decorator. Finally, Resolver is used
to wire fixtures and dependencies.

	
class rok.fixtures.BaseUrlSession(base_url=None, raise_for_status=True, client_ca=None, ssl_cert=None, ssl_key=None)

	Bases: requests.sessions.Session [https://requests.readthedocs.io/en/stable/api/#requests.Session]

Simple requests session using a base URL for all requests.

	Parameters

	
	base_url (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Base URL that should be used as prefix for
every request.

	raise_for_status (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Automatically raise an exception of
for error response codes. Default: True

	
create_url(url)

	

	
request(method, url, *args, raise_for_status=None, **kwargs)

	Constructs a Request, prepares it and sends it.
Returns Response object.

	Parameters

	
	method – method for the new Request object.

	url – URL for the new Request object.

	params – (optional) Dictionary or bytes to be sent in the query
string for the Request.

	data – (optional) Dictionary, list of tuples, bytes, or file-like
object to send in the body of the Request.

	json – (optional) json to send in the body of the
Request.

	headers – (optional) Dictionary of HTTP Headers to send with the
Request.

	cookies – (optional) Dict or CookieJar object to send with the
Request.

	files – (optional) Dictionary of 'filename': file-like-objects
for multipart encoding upload.

	auth – (optional) Auth tuple or callable to enable
Basic/Digest/Custom HTTP Auth.

	timeout (float [https://docs.python.org/3/library/functions.html#float] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – (optional) How long to wait for the server to send
data before giving up, as a float, or a (connect timeout,
read timeout) [https://requests.readthedocs.io/en/stable/user/advanced/#timeouts] tuple.

	allow_redirects (bool [https://docs.python.org/3/library/functions.html#bool]) – (optional) Set to True by default.

	proxies – (optional) Dictionary mapping protocol or protocol and
hostname to the URL of the proxy.

	stream – (optional) whether to immediately download the response
content. Defaults to False.

	verify – (optional) Either a boolean, in which case it controls whether we verify
the server’s TLS certificate, or a string, in which case it must be a path
to a CA bundle to use. Defaults to True. When set to
False, requests will accept any TLS certificate presented by
the server, and will ignore hostname mismatches and/or expired
certificates, which will make your application vulnerable to
man-in-the-middle (MitM) attacks. Setting verify to False
may be useful during local development or testing.

	cert – (optional) if String, path to ssl client cert file (.pem).
If Tuple, (‘cert’, ‘key’) pair.

	Return type

	requests.Response [https://requests.readthedocs.io/en/stable/api/#requests.Response]

	
class rok.fixtures.Resolver(fixtures=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Dependency resolver for function arguments annotated with
depends().

Dependencies of a function are loaded from the depends attribute of
the function. If a fixture is not available, the resolver checks if there
is a default argument. Otherwise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] is raised.

All fixtures can be overwritten by passing a corresponding keyword
argument to the resolver call.

Resolver uses the context manager protocol to manage the lifecycle of
generator-based fixtures.

Example

from sqlalchemy import create_engine
from krake.fixtures import fixture, depends, Resolver

@fixture
def engine():
 yield create_engine("postgresql://user:passwd@localhost:5432/database")

@depends("engine")
def fetch(engine, min_uid):
 with engine.begin() as connection:
 result = connection.execute(
 "SELECT username FROM users WHERE uid >= ?", min_uid
)
 for row in result:
 print(row["username"])

with Resolver() as resolver:
 # Execute function "fetch" with resolved fixtures. Additional
 # keyword arguments can be passed. These can also be used to
 # overwrite fixtures.
 resolver(fetch, min_uid=1000)

	Parameters

	fixtures (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – A mapping of fixture names to functions. Defaults
to the mapping of fixture.mapping

	
rok.fixtures.config()

	

	
rok.fixtures.depends(*dependencies)

	Decorator function for marking fixture dependencies of a function.

Example

from rok.fixtures import fixture, depends

@depends("engine")
def fetch_records(engine):
 # Do something with the engine ...

Fixtures themselves can also depend on other fixtures
@fixture
@depends("config")
def engine(config):
 return create_engine(config=config)

@fixture
def config:
 return load_config()

	Parameters

	*dependencies – Fixtures the decorated function depends on

	Returns

	Decorator for explicitly marking function dependencies.

	Return type

	callable

	
rok.fixtures.fixture(func)

	Mark a function or generator as fixtures. The name of the function is
used as fixture name.

If the marked function is a generator function, the fixture can be used
as kind of context manager:

@fixture
def session():
 with Session() as session:
 yield session

	
rok.fixtures.mapping

	Mapping of registered fixture names to functions

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parameters

	func – Function that should be registered as fixture

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If the a fixtures with the same name is already
registered.

	
rok.fixtures.session(config)

	

Command Line Parser

This module defines a declarative API for Python’s standard argparse [https://docs.python.org/3/library/argparse.html#module-argparse]
module.

	
class rok.parser.MetricAction(*args, nargs=None, default=None, metavar=None, **kwargs)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

argparse action for metric values

A metric argument requires two arguments. The first argument is the name
of a metric (str [https://docs.python.org/3/library/stdtypes.html#str]). The second argument is the weight of the
argument as float. The option can be called several times.

Example

cli --metric-argument my-metric 1.2 --metric-argument my-other-metric 4.5

The action will populate the namespace with a list of dictionaries:

[
 {"name": "my-metric", "weight": 1.2},
 {"name": "my-other-metric", "weight": 4.5},
 ...
]

	
class rok.parser.ParserSpec(*args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Declarative parser specification for Python’s standard argparse [https://docs.python.org/3/library/argparse.html#module-argparse]
module.

Example

from rok.parser import ParserSpec, argument

spec = ParserSpec(prog="spam", description="Spam command line interface")

@spec.command("spam", help="Spam your shell")
@argument("-n", type=int, default=42, help="How often should I spam?")
@argument("message", help="Spam message")
def spam(n, message):
 for _ in range(n):
 print(message)

parser = spec.create_parser()
args = parser.parse_args()

Specifications can be nested:

eggs = ParserSpec("eggs", aliases=["eg"], help="... and eggs")

@eggs.command("spam")
def eggs_spam():
 while True:
 print("spam")
 print("eggs")

spec.add_spec(eggs)

	Parameters

	
	*args – Positional arguments that will be passed to either
argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] or subparsers.

	*kwargs – Keyword arguments that will be passed to either
argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] or subparsers.

	
add_spec(subparser)

	Register another specification as subparser

	Parameters

	subparser (ParserSpec) – Sub-specification defining subcommands

	
command(name, *args, **kwargs)

	Decorator function for commands registering the name, positional
and keyword arguments for a subparser.

	Parameters

	
	name (name) – Name of the command that will be used in the command
line.

	*args – Positional arguments for the subparser

	**kwargs – Keyword arguments for the subparser

	Returns

	Decorator for functions that will be registered as
command default argument on the subparser.

	Return type

	callable

	
create_parser(parent=None)

	Create a standard Python parser from the specification

	Parameters

	parent (optional) – argparse subparser that should be used instead
of creating a new root argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	Returns

	Standard Python parser

	Return type

	argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]

	
subparser(*args, **kwargs)

	Create a subspecification and automatically register it via add_spec()

	Parameters

	
	*args – Positional arguments for the specification

	**kwargs – Keyword arguments for the specification

	Returns

	The new subspecification for subcommands

	Return type

	ParserSpec

	
class rok.parser.StoreDict(option_strings, dest, nargs=None, metavar='KEY=VALUE', **kwargs)

	Bases: argparse.Action [https://docs.python.org/3/library/argparse.html#argparse.Action]

Action storing <key=value> pairs in a dictionary.

Example

parser = argparse.ArgumentParser()
parser.add_argument(
 '--foo', action=StoreDict
)
args = parser.parse_args('--foo label=test --foo lorem=ipsum')
assert argparse.Namespace(foo={'label': 'test', 'lorem': 'ipsum'}) == args

	
rok.parser.arg_backoff(fn)

	

	
rok.parser.arg_backoff_delay(fn)

	

	
rok.parser.arg_backoff_limit(fn)

	

	
rok.parser.arg_formatting(fn)

	

	
rok.parser.arg_global_metric(fn)

	

	
rok.parser.arg_labels(fn)

	

	
rok.parser.arg_metric(fn)

	

	
rok.parser.arg_namespace(fn)

	

	
rok.parser.argument(*args, **kwargs)

	Decorator function for standard argparse [https://docs.python.org/3/library/argparse.html#module-argparse] arguments.

The passed arguments and keyword arguments are stored as tuple in a
parser_arguments attribute of the decorated function. This list will
be reused by class:ParserSpec to add arguments to decorated commands.

	Parameters

	
	*args – Positional arguments that should be passed to
argparse.ArgumentParser.add_argument() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument].

	**kwargs – Keyword arguments that should be passed to
argparse.ArgumentParser.add_argument() [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument].

	Returns

	A decorator that can be used to decorate a command function.

	Return type

	callable

	
rok.parser.mutually_exclusive_group(group)

	Decorator function for mutually exclusive argparse [https://docs.python.org/3/library/argparse.html#module-argparse] arguments.

	Parameters

	group (list of tuples) – A list of the standard :mod: argparse
arguments which are mutually exclusive. Each argument is
represented as a tuple of its args and kwargs.

	Returns

	A decorator that can be used to decorate a command function.

	Return type

	callable

 Python Module Index

 k |
 r

 		 	

 		
 k	

 	[image: -]
 	
 krake	

 	
 	
 krake.api	

 	
 	
 krake.api.app	

 	
 	
 krake.api.auth	

 	
 	
 krake.api.database	

 	
 	
 krake.api.helpers	

 	
 	
 krake.api.middlewares	

 	
 	
 krake.client	

 	
 	
 krake.client.core	

 	
 	
 krake.client.infrastructure	

 	
 	
 krake.client.kubernetes	

 	
 	
 krake.client.openstack	

 	
 	
 krake.controller	

 	
 	
 krake.controller.gc	

 	
 	
 krake.controller.kubernetes.application	

 	
 	
 krake.controller.kubernetes.cluster	

 	
 	
 krake.controller.magnum	

 	
 	
 krake.controller.scheduler	

 	
 	
 krake.data	

 	
 	
 krake.data.core	

 	
 	
 krake.data.infrastructure	

 	
 	
 krake.data.kubernetes	

 	
 	
 krake.data.serializable	

 		 	

 		
 r	

 	[image: -]
 	
 rok	

 	
 	
 rok.fixtures	

 	
 	
 rok.parser	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__aenter__() (krake.controller.Executor method)

 	__aexit__() (krake.controller.Executor method)

 	__call__() (krake.controller.Reflector method)

 	__exit__() (krake.controller.BurstWindow method)

 	__model__ (krake.data.serializable.ModelizedSchema attribute)

 	__post_init__() (krake.api.helpers.HttpProblem method)

 	(krake.data.infrastructure.GlobalCloud method)

 	(krake.data.infrastructure.ImSpec method)

 	(krake.data.kubernetes.ApplicationSpec method)

 	(krake.data.kubernetes.ClusterSpec method)

 	(krake.data.serializable.Serializable method)

 	
 	__str__() (krake.controller.ControllerError method)

A

 	
 	accept_accessible() (krake.controller.kubernetes.cluster.KubernetesClusterController static method)

 	add_arguments() (krake.ConfigurationOptionMapper method)

 	add_resource() (krake.controller.gc.DependencyGraph method)

 	add_spec() (rok.parser.ParserSpec method)

 	all() (krake.api.database.Session method)

 	always_allow() (in module krake.api.auth)

 	always_deny() (in module krake.api.auth)

 	api (krake.api.auth.AuthorizationRequest attribute), [1]

 	(krake.data.kubernetes.ClusterNode attribute)

 	(krake.data.serializable.ApiObject attribute)

 	api_client (krake.controller.kubernetes.application.KubernetesClient attribute)

 	ApiClient (class in krake.client)

 	ApiObject (class in krake.data.serializable)

 	ApiObject.Schema (class in krake.data.serializable)

 	Application (class in krake.data.kubernetes)

 	Application.Schema (class in krake.data.kubernetes)

 	application_reflector (krake.controller.kubernetes.application.KubernetesApplicationController attribute)

 	ApplicationComplete (class in krake.data.kubernetes)

 	ApplicationComplete.Schema (class in krake.data.kubernetes)

 	ApplicationList (class in krake.data.kubernetes)

 	
 	ApplicationList.Schema (class in krake.data.kubernetes)

 	ApplicationShutdown (class in krake.data.kubernetes)

 	ApplicationShutdown.Schema (class in krake.data.kubernetes)

 	ApplicationSpec (class in krake.data.kubernetes)

 	ApplicationSpec.Schema (class in krake.data.kubernetes)

 	ApplicationState (class in krake.data.kubernetes)

 	ApplicationStatus (class in krake.data.kubernetes)

 	ApplicationStatus.Schema (class in krake.data.kubernetes)

 	apply() (krake.controller.kubernetes.application.KubernetesClient method)

 	arg_backoff() (in module rok.parser)

 	arg_backoff_delay() (in module rok.parser)

 	arg_backoff_limit() (in module rok.parser)

 	arg_formatting() (in module rok.parser)

 	arg_global_metric() (in module rok.parser)

 	arg_labels() (in module rok.parser)

 	arg_metric() (in module rok.parser)

 	arg_namespace() (in module rok.parser)

 	argument() (in module rok.parser)

 	authentication() (in module krake.api.middlewares)

 	AuthorizationRequest (class in krake.api.auth)

B

 	
 	backoff (krake.data.kubernetes.ApplicationSpec attribute)

 	(krake.data.kubernetes.ClusterSpec attribute)

 	backoff_delay (krake.data.kubernetes.ApplicationSpec attribute)

 	(krake.data.kubernetes.ClusterSpec attribute)

 	backoff_limit (krake.data.kubernetes.ApplicationSpec attribute)

 	(krake.data.kubernetes.ClusterSpec attribute)

 	
 	BaseMetric (class in krake.data.core)

 	BaseMetric.Schema (class in krake.data.core)

 	BaseMetricsProvider (class in krake.data.core)

 	BaseMetricsProvider.Schema (class in krake.data.core)

 	BaseUrlSession (class in rok.fixtures)

 	blocking() (in module krake.api.helpers)

 	BurstWindow (class in krake.controller)

C

 	
 	cancel() (krake.controller.WorkQueue method)

 	check_external_endpoint() (krake.controller.kubernetes.application.KubernetesApplicationController method)

 	cleanup() (krake.controller.Controller method)

 	(krake.controller.gc.GarbageCollector method)

 	(krake.controller.kubernetes.application.KubernetesApplicationController method)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController method)

 	(krake.controller.magnum.MagnumClusterController method)

 	(krake.controller.scheduler.Scheduler method)

 	Client (class in krake.client)

 	client (krake.api.database.Session attribute)

 	(krake.client.ApiClient attribute)

 	client_certificate_authentication() (in module krake.api.auth)

 	close() (krake.client.Client method)

 	(krake.controller.WorkQueue method)

 	Cloud (class in krake.data.infrastructure)

 	Cloud.Schema (class in krake.data.infrastructure)

 	CloudBinding (class in krake.data.infrastructure)

 	CloudBinding.Schema (class in krake.data.infrastructure)

 	CloudConstraints (class in krake.data.kubernetes)

 	CloudConstraints.Schema (class in krake.data.kubernetes)

 	CloudList (class in krake.data.infrastructure)

 	CloudList.Schema (class in krake.data.infrastructure)

 	CloudSpec (class in krake.data.infrastructure)

 	CloudSpec.Schema (class in krake.data.infrastructure)

 	CloudState (class in krake.data.infrastructure)

 	CloudStatus (class in krake.data.infrastructure)

 	CloudStatus.Schema (class in krake.data.infrastructure)

 	cls (krake.api.database.Session attribute)

 	Cluster (class in krake.data.kubernetes)

 	Cluster.Schema (class in krake.data.kubernetes)

 	cluster_id (krake.data.kubernetes.ClusterStatus attribute)

 	cluster_reflector (krake.controller.kubernetes.cluster.KubernetesClusterController attribute)

 	ClusterBinding (class in krake.data.kubernetes)

 	ClusterBinding.Schema (class in krake.data.kubernetes)

 	ClusterCloudConstraints (class in krake.data.kubernetes)

 	ClusterCloudConstraints.Schema (class in krake.data.kubernetes)

 	ClusterConstraints (class in krake.data.kubernetes)

 	ClusterConstraints.Schema (class in krake.data.kubernetes)

 	ClusterList (class in krake.data.kubernetes)

 	ClusterList.Schema (class in krake.data.kubernetes)

 	ClusterNode (class in krake.data.kubernetes)

 	ClusterNode.Schema (class in krake.data.kubernetes)

 	ClusterNodeCondition (class in krake.data.kubernetes)

 	ClusterNodeCondition.Schema (class in krake.data.kubernetes)

 	ClusterNodeMetadata (class in krake.data.kubernetes)

 	ClusterNodeMetadata.Schema (class in krake.data.kubernetes)

 	ClusterNodeStatus (class in krake.data.kubernetes)

 	ClusterNodeStatus.Schema (class in krake.data.kubernetes)

 	ClusterSpec (class in krake.data.kubernetes)

 	ClusterSpec.Schema (class in krake.data.kubernetes)

 	ClusterState (class in krake.data.kubernetes)

 	ClusterStatus (class in krake.data.kubernetes)

 	ClusterStatus.Schema (class in krake.data.kubernetes)

 	
 	command() (rok.parser.ParserSpec method)

 	comment (krake.data.infrastructure.ProjectReference attribute)

 	(krake.data.infrastructure.UserReference attribute)

 	comparison_column (krake.data.core.KafkaSpec attribute)

 	complete_cert (krake.data.kubernetes.ApplicationStatus attribute)

 	complete_key (krake.data.kubernetes.ApplicationStatus attribute)

 	complete_token (krake.data.kubernetes.ApplicationStatus attribute)

 	concurrent() (in module krake.controller.magnum)

 	conditions (krake.data.kubernetes.ClusterNodeStatus attribute)

 	config() (in module rok.fixtures)

 	ConfigurationOptionMapper (class in krake)

 	Conflict (class in krake.data.core)

 	Conflict.Schema (class in krake.data.core)

 	Constraints (class in krake.data.kubernetes)

 	constraints (krake.data.kubernetes.ApplicationSpec attribute)

 	Constraints.Schema (class in krake.data.kubernetes)

 	consume() (krake.controller.magnum.MagnumClusterController method)

 	container_health (krake.data.kubernetes.ApplicationStatus attribute)

 	ContainerHealth (class in krake.data.kubernetes)

 	ContainerHealth.Schema (class in krake.data.kubernetes)

 	Controller (class in krake.controller)

 	ControllerError

 	CoreApi (class in krake.client.core)

 	CoreMetadata (class in krake.data.core)

 	CoreMetadata.Schema (class in krake.data.core)

 	cors_setup() (in module krake.api.app)

 	create_app() (in module krake.api.app)

 	create_application() (krake.client.kubernetes.KubernetesApi method)

 	create_client_certificate() (in module krake.controller.magnum)

 	create_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	create_cluster() (krake.client.kubernetes.KubernetesApi method)

 	create_endpoint() (krake.controller.Controller method)

 	create_global_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	create_global_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	create_global_metric() (krake.client.core.CoreApi method)

 	create_global_metrics_provider() (krake.client.core.CoreApi method)

 	create_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	create_magnum_client() (krake.controller.magnum.MagnumClusterController method)

 	create_magnum_cluster() (in module krake.controller.magnum)

 	(krake.client.openstack.OpenStackApi method)

 	create_metric() (krake.client.core.CoreApi method)

 	create_metrics_provider() (krake.client.core.CoreApi method)

 	create_parser() (rok.parser.ParserSpec method)

 	create_project() (krake.client.openstack.OpenStackApi method)

 	create_role() (krake.client.core.CoreApi method)

 	create_role_binding() (krake.client.core.CoreApi method)

 	create_ssl_context() (in module krake.controller)

 	create_url() (rok.fixtures.BaseUrlSession method)

 	created (krake.api.database.Revision attribute), [1]

 	CreateFailed

 	csar (krake.data.kubernetes.ApplicationSpec attribute)

 	custom_resource_apis (krake.controller.kubernetes.application.KubernetesClient attribute)

 	custom_resources (krake.controller.kubernetes.application.KubernetesClient attribute)

 	(krake.data.kubernetes.ClusterSpec attribute)

D

 	
 	DatabaseError

 	db_session() (in module krake.api.app)

 	default_namespace (krake.controller.kubernetes.application.KubernetesClient attribute)

 	delete() (krake.api.database.Session method)

 	(krake.controller.kubernetes.application.KubernetesClient method)

 	delete_application() (krake.client.kubernetes.KubernetesApi method)

 	delete_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	delete_cluster() (krake.client.kubernetes.KubernetesApi method)

 	delete_global_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	delete_global_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	delete_global_metric() (krake.client.core.CoreApi method)

 	delete_global_metrics_provider() (krake.client.core.CoreApi method)

 	delete_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	delete_magnum_cluster() (in module krake.controller.magnum)

 	(krake.client.openstack.OpenStackApi method)

 	(krake.controller.magnum.MagnumClusterController method)

 	
 	delete_metric() (krake.client.core.CoreApi method)

 	delete_metrics_provider() (krake.client.core.CoreApi method)

 	delete_project() (krake.client.openstack.OpenStackApi method)

 	delete_role() (krake.client.core.CoreApi method)

 	delete_role_binding() (krake.client.core.CoreApi method)

 	DeleteFailed

 	DependencyCycleException

 	DependencyException

 	DependencyGraph (class in krake.controller.gc)

 	depends() (in module rok.fixtures)

 	deserialize() (krake.api.helpers.QueryFlag method)

 	(krake.data.serializable.Serializable class method)

 	detail (krake.api.helpers.HttpProblem attribute)

 	domain_id (krake.data.infrastructure.ProjectReference attribute)

 	domain_name (krake.data.infrastructure.UserReference attribute)

 	done() (krake.controller.WorkQueue method)

E

 	
 	empty() (krake.controller.WorkQueue method)

 	error_log() (in module krake.api.middlewares)

 	EtcdClient (class in krake.api.database)

 	
 	Event (class in krake.api.database)

 	event (krake.api.database.Event attribute), [1]

 	EventType (class in krake.api.database)

 	Executor (class in krake.controller)

F

 	
 	field_for_schema() (in module krake.data.serializable)

 	fields_ignored_by_creation() (krake.data.serializable.Serializable class method)

 	fixture() (in module rok.fixtures)

 	
 	format_kwargs() (krake.data.Key method)

 	format_object() (krake.data.Key method)

 	format_openstack_error() (in module krake.controller.magnum)

 	full() (krake.controller.WorkQueue method)

G

 	
 	GarbageCollector (class in krake.controller.gc)

 	generate_magnum_cluster_name() (in module krake.controller.magnum)

 	get() (krake.api.database.Session method)

 	(krake.controller.WorkQueue method)

 	get_api_method() (krake.controller.gc.GarbageCollector method)

 	get_direct_dependents() (krake.controller.gc.DependencyGraph method)

 	get_immutables() (krake.controller.kubernetes.application.KubernetesClient method)

 	get_kubernetes_resource_idx() (in module krake.controller.kubernetes.application)

 	get_resource_api() (krake.controller.kubernetes.application.KubernetesClient method)

 	GlobalCloud (class in krake.data.infrastructure)

 	GlobalCloud.Schema (class in krake.data.infrastructure)

 	GlobalCloudList (class in krake.data.infrastructure)

 	
 	GlobalCloudList.Schema (class in krake.data.infrastructure)

 	GlobalInfrastructureProvider (class in krake.data.infrastructure)

 	GlobalInfrastructureProvider.Schema (class in krake.data.infrastructure)

 	GlobalInfrastructureProviderList (class in krake.data.infrastructure)

 	GlobalInfrastructureProviderList.Schema (class in krake.data.infrastructure)

 	GlobalMetric (class in krake.data.core)

 	GlobalMetric.Schema (class in krake.data.core)

 	GlobalMetricList (class in krake.data.core)

 	GlobalMetricList.Schema (class in krake.data.core)

 	GlobalMetricsProvider (class in krake.data.core)

 	GlobalMetricsProvider.Schema (class in krake.data.core)

 	GlobalMetricsProviderList (class in krake.data.core)

 	GlobalMetricsProviderList.Schema (class in krake.data.core)

H

 	
 	handle_resource() (krake.controller.gc.GarbageCollector method)

 	(krake.controller.kubernetes.application.KubernetesApplicationController method)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController method)

 	Heartbeat (class in krake.api.helpers)

 	heartbeat() (krake.api.helpers.Heartbeat method)

 	hooks (krake.controller.kubernetes.application.KubernetesApplicationController attribute)

 	(krake.data.kubernetes.ApplicationSpec attribute)

 	
 	HookType (class in krake.controller.kubernetes.application)

 	(class in krake.controller.kubernetes.cluster)

 	http_session() (in module krake.api.app)

 	HttpProblem (class in krake.api.helpers)

 	HttpProblem.Schema (class in krake.api.helpers)

 	HttpProblemError

 	HttpProblemTitle (class in krake.api.helpers)

I

 	
 	ImSpec (class in krake.data.infrastructure)

 	ImSpec.Schema (class in krake.data.infrastructure)

 	InfrastructureApi (class in krake.client.infrastructure)

 	InfrastructureProvider (class in krake.data.infrastructure)

 	InfrastructureProvider.Schema (class in krake.data.infrastructure)

 	InfrastructureProviderList (class in krake.data.infrastructure)

 	InfrastructureProviderList.Schema (class in krake.data.infrastructure)

 	InfrastructureProviderRef (class in krake.data.infrastructure)

 	InfrastructureProviderRef.Schema (class in krake.data.infrastructure)

 	
 	InfrastructureProviderSpec (class in krake.data.infrastructure)

 	InfrastructureProviderSpec.Schema (class in krake.data.infrastructure)

 	instance (krake.api.helpers.HttpProblem attribute)

 	InvalidClusterTemplateType

 	is_base_generic() (in module krake.data.serializable)

 	is_generic() (in module krake.data.serializable)

 	is_generic_subtype() (in module krake.data.serializable)

 	is_in_deletion() (krake.controller.gc.GarbageCollector static method)

 	is_qualified_generic() (in module krake.data.serializable)

J

 	
 	joint() (in module krake.controller)

K

 	
 	KafkaSpec (class in krake.data.core)

 	KafkaSpec.Schema (class in krake.data.core)

 	Key (class in krake.data)

 	key (krake.api.database.Revision attribute), [1]

 	keycloak_authentication() (in module krake.api.auth)

 	keystone_authentication() (in module krake.api.auth)

 	kind (krake.data.kubernetes.ClusterNode attribute)

 	(krake.data.serializable.ApiObject attribute)

 	krake (module)

 	krake.api (module)

 	krake.api.app (module)

 	krake.api.auth (module)

 	krake.api.database (module)

 	krake.api.helpers (module)

 	krake.api.middlewares (module)

 	krake.client (module)

 	krake.client.core (module)

 	krake.client.infrastructure (module)

 	krake.client.kubernetes (module)

 	krake.client.openstack (module)

 	krake.controller (module)

 	
 	krake.controller.gc (module)

 	krake.controller.kubernetes.application (module)

 	krake.controller.kubernetes.cluster (module)

 	krake.controller.magnum (module)

 	krake.controller.scheduler (module)

 	krake.data (module)

 	krake.data.core (module)

 	krake.data.infrastructure (module)

 	krake.data.kubernetes (module)

 	krake.data.serializable (module)

 	kube_controller_triggered (krake.data.kubernetes.ApplicationStatus attribute)

 	(krake.data.kubernetes.ClusterStatus attribute)

 	kubeconfig (krake.controller.kubernetes.application.KubernetesClient attribute)

 	(krake.data.kubernetes.ClusterSpec attribute)

 	kubernetes_api (krake.controller.kubernetes.application.KubernetesApplicationController attribute)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController attribute)

 	KubernetesApi (class in krake.client.kubernetes)

 	KubernetesApplicationController (class in krake.controller.kubernetes.application)

 	KubernetesApplicationObserver (class in krake.controller.kubernetes.application)

 	KubernetesClient (class in krake.controller.kubernetes.application)

 	KubernetesClusterController (class in krake.controller.kubernetes.cluster)

 	KubernetesClusterObserver (class in krake.controller.kubernetes.cluster)

L

 	
 	last_applied_manifest (krake.data.kubernetes.ApplicationStatus attribute)

 	last_applied_tosca (krake.data.kubernetes.ClusterStatus attribute)

 	last_observed_manifest (krake.data.kubernetes.ApplicationStatus attribute)

 	list_all_applications() (krake.client.kubernetes.KubernetesApi method)

 	list_all_clouds() (krake.client.infrastructure.InfrastructureApi method)

 	list_all_clusters() (krake.client.kubernetes.KubernetesApi method)

 	list_all_infrastructure_providers() (krake.client.infrastructure.InfrastructureApi method)

 	list_all_magnum_clusters() (krake.client.openstack.OpenStackApi method)

 	list_all_projects() (krake.client.openstack.OpenStackApi method)

 	list_and_watch() (krake.controller.Reflector method)

 	list_app() (krake.controller.kubernetes.application.KubernetesApplicationController method)

 	list_applications() (krake.client.kubernetes.KubernetesApi method)

 	list_clouds() (krake.client.infrastructure.InfrastructureApi method)

 	list_cluster() (krake.controller.kubernetes.cluster.KubernetesClusterController method)

 	list_clusters() (krake.client.kubernetes.KubernetesApi method)

 	list_global_clouds() (krake.client.infrastructure.InfrastructureApi method)

 	list_global_infrastructure_providers() (krake.client.infrastructure.InfrastructureApi method)

 	list_global_metrics() (krake.client.core.CoreApi method)

 	
 	list_global_metrics_providers() (krake.client.core.CoreApi method)

 	list_infrastructure_providers() (krake.client.infrastructure.InfrastructureApi method)

 	list_magnum_clusters() (krake.client.openstack.OpenStackApi method)

 	list_metrics() (krake.client.core.CoreApi method)

 	list_metrics_providers() (krake.client.core.CoreApi method)

 	list_projects() (krake.client.openstack.OpenStackApi method)

 	list_resource() (krake.controller.Reflector method)

 	list_role_bindings() (krake.client.core.CoreApi method)

 	list_roles() (krake.client.core.CoreApi method)

 	ListMetadata (class in krake.data.core)

 	ListMetadata.Schema (class in krake.data.core)

 	ListQuery (class in krake.api.helpers)

 	load() (in module krake.api.helpers)

 	load_authentication() (in module krake.api.app)

 	load_authorizer() (in module krake.api.app)

 	load_instance() (krake.api.database.Session method)

 	load_yaml_config() (in module krake)

 	log_response() (krake.controller.kubernetes.application.KubernetesClient static method)

M

 	
 	MagnumClusterController (class in krake.controller.magnum)

 	make_create_request_schema() (in module krake.api.helpers)

 	make_csr() (in module krake.controller.magnum)

 	make_keystone_session() (in module krake.controller.magnum)

 	make_kubeconfig() (in module krake.controller.magnum)

 	make_magnum_client() (in module krake.controller.magnum)

 	mangled_observer_schema (krake.data.kubernetes.ApplicationStatus attribute)

 	manifest (krake.data.kubernetes.ApplicationSpec attribute)

 	mapping (in module rok.fixtures)

 	matches() (krake.data.Key method)

 	merge() (krake.ConfigurationOptionMapper method)

 	message (krake.data.kubernetes.ClusterNodeCondition attribute)

 	Metadata (class in krake.data.core)

 	Metadata.Schema (class in krake.data.core)

 	Metric (class in krake.data.core)

 	Metric.Schema (class in krake.data.core)

 	MetricAction (class in rok.parser)

 	MetricList (class in krake.data.core)

 	
 	MetricList.Schema (class in krake.data.core)

 	MetricRef (class in krake.data.core)

 	MetricRef.Schema (class in krake.data.core)

 	metrics (krake.data.kubernetes.ClusterSpec attribute)

 	metrics_reasons (krake.data.infrastructure.CloudStatus attribute)

 	(krake.data.kubernetes.ClusterStatus attribute)

 	MetricSpec (class in krake.data.core)

 	MetricSpec.Schema (class in krake.data.core)

 	MetricSpecProvider (class in krake.data.core)

 	MetricSpecProvider.Schema (class in krake.data.core)

 	MetricsProvider (class in krake.data.core)

 	MetricsProvider.Schema (class in krake.data.core)

 	MetricsProviderList (class in krake.data.core)

 	MetricsProviderList.Schema (class in krake.data.core)

 	MetricsProviderSpec (class in krake.data.core)

 	MetricsProviderSpec.Schema (class in krake.data.core)

 	ModelizedSchema (class in krake.data.serializable)

 	modified (krake.api.database.Revision attribute), [1]

 	mutually_exclusive_group() (in module rok.parser)

N

 	
 	name (krake.data.infrastructure.ProjectReference attribute)

 	(krake.data.kubernetes.ClusterNodeMetadata attribute)

 	
 	namespace (krake.api.auth.AuthorizationRequest attribute), [1]

 	nodes (krake.data.kubernetes.ClusterStatus attribute)

O

 	
 	observe_resource() (krake.controller.Observer method)

 	Observer (class in krake.controller)

 	observer_schema (krake.data.kubernetes.ApplicationSpec attribute)

 	observer_time_step (krake.controller.kubernetes.application.KubernetesApplicationController attribute)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController attribute)

 	observers (krake.controller.kubernetes.application.KubernetesApplicationController attribute)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController attribute)

 	ObserverSchemaError

 	on_creating() (krake.controller.magnum.MagnumClusterController method)

 	on_pending() (krake.controller.magnum.MagnumClusterController method)

 	on_received_deleted() (krake.controller.gc.GarbageCollector method)

 	
 	on_received_new() (krake.controller.gc.GarbageCollector method)

 	on_received_update() (krake.controller.gc.GarbageCollector method)

 	on_reconciling() (krake.controller.magnum.MagnumClusterController method)

 	on_running() (krake.controller.magnum.MagnumClusterController method)

 	on_status_update() (krake.controller.kubernetes.application.KubernetesApplicationController method)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController method)

 	open() (krake.client.Client method)

 	OpenStackApi (class in krake.client.openstack)

 	OpenstackAuthMethod (class in krake.data.infrastructure)

 	OpenstackAuthMethod.Schema (class in krake.data.infrastructure)

 	OpenstackSpec (class in krake.data.infrastructure)

 	OpenstackSpec.Schema (class in krake.data.infrastructure)

P

 	
 	ParserSpec (class in rok.parser)

 	Password (class in krake.data.infrastructure)

 	password (krake.data.infrastructure.ImSpec attribute)

 	(krake.data.infrastructure.UserReference attribute)

 	Password.Schema (class in krake.data.infrastructure)

 	persistent() (in module krake.data)

 	plurals (krake.client.ApiClient attribute)

 	poll_resource() (krake.controller.kubernetes.application.KubernetesApplicationObserver method)

 	(krake.controller.Observer method)

 	(krake.controller.kubernetes.cluster.KubernetesClusterObserver method)

 	PolymorphicContainer (class in krake.data.serializable)

 	PolymorphicContainer.Schema (class in krake.data.serializable)

 	PolymorphicContainerSchema (class in krake.data.serializable)

 	prefix() (krake.data.Key method)

 	prepare() (krake.controller.Controller method)

 	(krake.controller.gc.GarbageCollector method)

 	(krake.controller.kubernetes.application.KubernetesApplicationController method)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController method)

 	(krake.controller.magnum.MagnumClusterController method)

 	(krake.controller.scheduler.Scheduler method)

 	
 	problem_response() (in module krake.api.middlewares)

 	process_cluster() (krake.controller.magnum.MagnumClusterController method)

 	project (krake.data.infrastructure.Password attribute)

 	ProjectReference (class in krake.data.infrastructure)

 	ProjectReference.Schema (class in krake.data.infrastructure)

 	PrometheusSpec (class in krake.data.core)

 	PrometheusSpec.Schema (class in krake.data.core)

 	protected() (in module krake.api.auth)

 	put() (krake.api.database.Session method)

 	(krake.controller.WorkQueue method)

Q

 	
 	QueryFlag (class in krake.api.helpers)

R

 	
 	randstr() (in module krake.controller.magnum)

 	rbac() (in module krake.api.auth)

 	read_application() (krake.client.kubernetes.KubernetesApi method)

 	read_ca_certificate() (in module krake.controller.magnum)

 	read_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	read_cluster() (krake.client.kubernetes.KubernetesApi method)

 	read_global_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	read_global_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	read_global_metric() (krake.client.core.CoreApi method)

 	read_global_metrics_provider() (krake.client.core.CoreApi method)

 	read_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	read_magnum_cluster() (in module krake.controller.magnum)

 	(krake.client.openstack.OpenStackApi method)

 	read_magnum_cluster_template() (in module krake.controller.magnum)

 	read_metric() (krake.client.core.CoreApi method)

 	read_metrics_provider() (krake.client.core.CoreApi method)

 	read_project() (krake.client.openstack.OpenStackApi method)

 	read_role() (krake.client.core.CoreApi method)

 	read_role_binding() (krake.client.core.CoreApi method)

 	readonly_fields() (krake.data.serializable.Serializable class method)

 	Reason (class in krake.data.core)

 	reason (krake.data.kubernetes.ClusterNodeCondition attribute)

 	Reason.Schema (class in krake.data.core)

 	ReasonCode (class in krake.data.core)

 	reconcile_kubernetes_resource() (krake.controller.magnum.MagnumClusterController method)

 	reconcile_magnum_cluster() (krake.controller.magnum.MagnumClusterController method)

 	ReconcileFailed

 	Reflector (class in krake.controller)

 	register() (krake.data.serializable.PolymorphicContainer class method)

 	(krake.data.serializable.PolymorphicContainerSchema class method)

 	register_service() (in module krake.controller.kubernetes.application)

 	(in module krake.controller.kubernetes.cluster)

 	register_task() (krake.controller.Controller method)

 	remove_none_values() (krake.api.helpers.HttpProblem method)

 	(krake.api.helpers.HttpProblem.Schema class method)

 	
 	remove_resource() (krake.controller.gc.DependencyGraph method)

 	request() (rok.fixtures.BaseUrlSession method)

 	resize_magnum_cluster() (in module krake.controller.magnum)

 	Resolver (class in rok.fixtures)

 	resource (krake.api.auth.AuthorizationRequest attribute), [1]

 	resource_apis (krake.controller.kubernetes.application.KubernetesClient attribute)

 	resource_received() (krake.controller.gc.GarbageCollector method)

 	resource_ref() (in module krake.data.core)

 	ResourceRef (class in krake.data.core)

 	ResourceRef.Schema (class in krake.data.core)

 	ResourceWithDependentsException

 	retries (krake.data.kubernetes.ClusterStatus attribute)

 	retry() (krake.controller.Controller method)

 	retry_transaction() (in module krake.api.middlewares)

 	rev (krake.api.database.Event attribute), [1]

 	Revision (class in krake.api.database)

 	revision() (in module krake.api.database)

 	rok (module)

 	rok.fixtures (module)

 	rok.parser (module)

 	Role (class in krake.data.core)

 	Role.Schema (class in krake.data.core)

 	RoleBinding (class in krake.data.core)

 	RoleBinding.Schema (class in krake.data.core)

 	RoleBindingList (class in krake.data.core)

 	RoleBindingList.Schema (class in krake.data.core)

 	RoleList (class in krake.data.core)

 	RoleList.Schema (class in krake.data.core)

 	RoleRule (class in krake.data.core)

 	RoleRule.Schema (class in krake.data.core)

 	run() (in module krake.controller)

 	(krake.controller.Controller method)

 	(krake.controller.Observer method)

 	running_on (krake.data.kubernetes.ApplicationStatus attribute)

 	(krake.data.kubernetes.ClusterStatus attribute)

S

 	
 	scheduled (krake.data.kubernetes.ApplicationStatus attribute)

 	(krake.data.kubernetes.ClusterStatus attribute)

 	scheduled_or_deleting() (krake.controller.kubernetes.application.KubernetesApplicationController static method)

 	scheduled_to (krake.data.kubernetes.ApplicationStatus attribute)

 	(krake.data.kubernetes.ClusterStatus attribute)

 	Scheduler (class in krake.controller.scheduler)

 	Schema (krake.data.serializable.PolymorphicContainer attribute)

 	(krake.data.serializable.Serializable attribute)

 	search_config() (in module krake)

 	Serializable (class in krake.data.serializable)

 	Serializable.Schema (class in krake.data.serializable)

 	SerializableMeta (class in krake.data.serializable)

 	serialize() (krake.data.serializable.Serializable method)

 	services (krake.data.kubernetes.ApplicationStatus attribute)

 	Session (class in krake.api.database)

 	session() (in module krake.api.helpers)

 	(in module rok.fixtures)

 	setup_logging() (in module krake)

 	shutdown() (krake.controller.kubernetes.application.KubernetesClient method)

 	shutdown_cert (krake.data.kubernetes.ApplicationStatus attribute)

 	shutdown_grace_period (krake.data.kubernetes.ApplicationStatus attribute)

 	
 	shutdown_grace_time (krake.data.kubernetes.ApplicationSpec attribute)

 	shutdown_key (krake.data.kubernetes.ApplicationStatus attribute)

 	shutdown_token (krake.data.kubernetes.ApplicationStatus attribute)

 	sigmoid_delay() (in module krake.controller)

 	simple_on_receive() (krake.controller.Controller method)

 	size() (krake.controller.WorkQueue method)

 	state (krake.data.infrastructure.CloudStatus attribute)

 	(krake.data.kubernetes.ApplicationStatus attribute)

 	(krake.data.kubernetes.ClusterStatus attribute)

 	static_authentication() (in module krake.api.auth)

 	StaticSpec (class in krake.data.core)

 	StaticSpec.Schema (class in krake.data.core)

 	Status (class in krake.data.core)

 	status (krake.api.helpers.HttpProblem attribute)

 	(krake.data.kubernetes.ClusterNode attribute)

 	(krake.data.kubernetes.ClusterNodeCondition attribute)

 	Status.Schema (class in krake.data.core)

 	stop() (krake.controller.Executor method)

 	StoreDict (class in rok.parser)

 	subparser() (rok.parser.ParserSpec method)

 	subresources_fields() (krake.data.serializable.Serializable class method)

T

 	
 	table (krake.data.core.KafkaSpec attribute)

 	title (krake.api.helpers.HttpProblem attribute)

 	token (krake.data.infrastructure.ImSpec attribute)

 	
 	tosca (krake.data.kubernetes.ApplicationSpec attribute)

 	TransactionError

 	type (krake.api.helpers.HttpProblem attribute)

 	(krake.data.kubernetes.ClusterNodeCondition attribute)

U

 	
 	unregister_service() (in module krake.controller.kubernetes.application)

 	(in module krake.controller.kubernetes.cluster)

 	update() (krake.data.serializable.PolymorphicContainer method)

 	(krake.data.serializable.Serializable method)

 	update_application() (krake.client.kubernetes.KubernetesApi method)

 	update_application_binding() (krake.client.kubernetes.KubernetesApi method)

 	update_application_complete() (krake.client.kubernetes.KubernetesApi method)

 	update_application_shutdown() (krake.client.kubernetes.KubernetesApi method)

 	update_application_status() (krake.client.kubernetes.KubernetesApi method)

 	update_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	update_cloud_status() (krake.client.infrastructure.InfrastructureApi method)

 	update_cluster() (krake.client.kubernetes.KubernetesApi method)

 	update_cluster_binding() (krake.client.kubernetes.KubernetesApi method)

 	update_cluster_status() (krake.client.kubernetes.KubernetesApi method)

 	update_global_cloud() (krake.client.infrastructure.InfrastructureApi method)

 	update_global_cloud_status() (krake.client.infrastructure.InfrastructureApi method)

 	update_global_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	update_global_metric() (krake.client.core.CoreApi method)

 	update_global_metrics_provider() (krake.client.core.CoreApi method)

 	update_infrastructure_provider() (krake.client.infrastructure.InfrastructureApi method)

 	
 	update_last_applied_manifest_from_resp() (in module krake.controller.kubernetes.application)

 	update_last_observed_manifest_from_resp() (in module krake.controller.kubernetes.application)

 	update_magnum_cluster() (krake.client.openstack.OpenStackApi method)

 	update_magnum_cluster_binding() (krake.client.openstack.OpenStackApi method)

 	update_magnum_cluster_status() (krake.client.openstack.OpenStackApi method)

 	update_metric() (krake.client.core.CoreApi method)

 	update_metrics_provider() (krake.client.core.CoreApi method)

 	update_project() (krake.client.openstack.OpenStackApi method)

 	update_project_status() (krake.client.openstack.OpenStackApi method)

 	update_resource() (krake.controller.gc.DependencyGraph method)

 	update_role() (krake.client.core.CoreApi method)

 	update_role_binding() (krake.client.core.CoreApi method)

 	url (krake.data.core.KafkaSpec attribute)

 	(krake.data.infrastructure.ImSpec attribute)

 	use_schema() (in module krake.api.helpers)

 	user (krake.data.infrastructure.Password attribute)

 	username (krake.data.infrastructure.ImSpec attribute)

 	(krake.data.infrastructure.UserReference attribute)

 	UserReference (class in krake.data.infrastructure)

 	UserReference.Schema (class in krake.data.infrastructure)

V

 	
 	validate_key() (in module krake.data.core)

 	validate_value() (in module krake.data.core)

 	value (krake.api.database.Event attribute), [1]

 	value_column (krake.data.core.KafkaSpec attribute)

 	
 	Verb (class in krake.data.core)

 	verb (krake.api.auth.AuthorizationRequest attribute), [1]

 	version (krake.api.database.Revision attribute), [1]

 	(krake.data.infrastructure.Password attribute)

W

 	
 	wait_for_running() (krake.controller.magnum.MagnumClusterController method)

 	watch() (krake.api.database.Session method)

 	(krake.api.database.Watcher method)

 	(krake.client.Watcher method)

 	watch_all_applications() (krake.client.kubernetes.KubernetesApi method)

 	watch_all_clouds() (krake.client.infrastructure.InfrastructureApi method)

 	watch_all_clusters() (krake.client.kubernetes.KubernetesApi method)

 	watch_all_infrastructure_providers() (krake.client.infrastructure.InfrastructureApi method)

 	watch_all_magnum_clusters() (krake.client.openstack.OpenStackApi method)

 	watch_all_projects() (krake.client.openstack.OpenStackApi method)

 	watch_applications() (krake.client.kubernetes.KubernetesApi method)

 	watch_clouds() (krake.client.infrastructure.InfrastructureApi method)

 	watch_clusters() (krake.client.kubernetes.KubernetesApi method)

 	watch_global_clouds() (krake.client.infrastructure.InfrastructureApi method)

 	watch_global_infrastructure_providers() (krake.client.infrastructure.InfrastructureApi method)

 	watch_global_metrics() (krake.client.core.CoreApi method)

 	
 	watch_global_metrics_providers() (krake.client.core.CoreApi method)

 	watch_infrastructure_providers() (krake.client.infrastructure.InfrastructureApi method)

 	watch_magnum_clusters() (krake.client.openstack.OpenStackApi method)

 	watch_metrics() (krake.client.core.CoreApi method)

 	watch_metrics_providers() (krake.client.core.CoreApi method)

 	watch_projects() (krake.client.openstack.OpenStackApi method)

 	watch_resource() (krake.controller.Reflector method)

 	watch_role_bindings() (krake.client.core.CoreApi method)

 	watch_roles() (krake.client.core.CoreApi method)

 	Watcher (class in krake.api.database)

 	(class in krake.client)

 	WatchEvent (class in krake.data.core)

 	WatchEvent.Schema (class in krake.data.core)

 	WatchEventType (class in krake.data.core)

 	worker_count (krake.controller.kubernetes.application.KubernetesApplicationController attribute)

 	(krake.controller.kubernetes.cluster.KubernetesClusterController attribute)

 	WorkQueue (class in krake.controller)

Statefulness

Statefulness is a property of an application, if it creates, uses, controls and / or manages
some persistent data. We also talk about a stateful application in this context.

Note

This feature is still under development in Krake, so new features could
be added or removed in the future. Also, some implementation details might
change.

Therefore, this page is subject to changes until this note is removed.

Krake enables statefulness with its shutdown hook Shutdown, a full
explanation for this mechanism can be found in the linked chapter.
This hook enables Krake to safely shutdown an application for migration or complete deletion.
The following picture shows the overall mechanism.

[image: ../_images/shutdown_hook.png]

Shutdown hook workflow in Krake

It is important to note, that the shutdown hook itself does NOT save the data or even
stops the application. If the hook is active for a specific application, Krake only calls
a micro-service through a network call. This service preferably sits in the same
container as the stateful application; its only task is to stop the corresponding application,
if it receives the command, and then report back, if the application really stopped.
You can view this micro-service as the extended arm of Krake.
But this service also doesn’t ensure that the data of an application is saved before a
shutdown, since it only initiates the graceful shutdown.
The actual application needs to handle its data integrity and storage itself during the
shutdown process.

External storage

At the moment, Krake implements statefulness through external storage solutions like buckets
(e.g. Amazon S3, Minio) or other network accessible options.
This is only a very simple form of statefulness, which would require a user to also
have access to external storage or setup some solution himself.

The following figure demonstrates this principle.

[image: ../_images/shutdown_hook__external_storage.png]

Shutdown hook workflow with an external persistent storage

This solution requires no mechanism for transferring storage by Krake itself, since the
storage isn’t managed by Krake; the storage solution basically acts as a static backend.

 _images/kubernetes_observer.png
User

APl /
Scheduler

:Controller

:Observer

Resource

Create
Application

200

Update resource
manifest via the APl

Request creation

Update resource

Update is watched,

Create actual resource

Create Observer

Stop Observer

Get status

return status

Check status
|| differences

Update resource

Create Observer

manifest directly via Kubernetes

Delete
Application

Notify change o

resource status

Get status

Update is watched,

Delete
Application

e

Stop Observer

Detect discrepancy between
resource spec and resource status

Update actual resource

Detect discrepancy
between actual status
[and resource statls

Create Observer

Delete Observer

Delete actual application

_images/operator-pattern.png
Obs

erve

v

Analyze
Actual s Desired state

A

o

_images/infrastructure_controller_reconciliation_example.png
Cluster received

YES

(1) Cluster in
deleted state?

(1a) Detete Cluster spectosca

ltosca_definitions version: tosca simple yam 1.0
NO ldescription: TOSCA template for launching a Kubernetes Cluster

waitlor it
[topotogy_template:

(1b) Cluster
Is deleted?

NO status.last_applied_tosca

ltosca_definitions version: tosca simple yam 1.0
ldescription: TOSCA template for launching a Kubernetes Cluster

[topotogy_template:

(1¢) Remove Cluster

finalizer

(3) Diffbetween (4) Cluster
spec.tosca YES is new? No
and (status.running_on
status.last_applied_tosca? is empty)

(42) Create
Cluster and update
status.last_applied_tosca
and status.running_on

(4) Reconcile
Cluster and update
status.last_applied_tosca

(5) Cluster in
failing reconcilation state?

(52) Reconfigure Cluster

(7) Cluster
s fully configured?

(6) Cluster in
online or connecting state?

(7a) Update Cluster state to
connecting and save its
kubeconfig manifest

_images/kubernetes_controller_reconciliation_example.png
spec.manifest

Javi: vt
kind: Song
Imetadata:
name: top50
[spec:

key1: kiestbo
key2: lelavabo
rythms:
~bubam

- badum

lavi: vt

ine: Artist
Imetadta:
name: gainsbourg (1) Generate default observer schema for resources.
Jspee: wilhou!custom observer schema

birth: 1928

death: 1991 l

status mangled_observer_schema

(2) Iitiaize or update known filds.
MANGLING
(.. Complete Hook)

(3) Mangle resources and observer_schema

‘Similary, this step (mangling) may add whole
new resouirces o the last_applied_manifest
‘and ensures that they are observed by adding
them to the mangled_observer_schema

v
status.Jast_applied_manfest status Jast_observed_manifest

—
(@ Compare
ony
Compare list length against
allowed lit length
e aeman\’
(58) Create resource using “modifed” (50) Delete resource
the last_appied_manitest v
(5b) Patch resource using
anifest,only
K8S API response
filds defined in observer_schema | X€Y2 elavabo (7) Update or Initalze with ields
but notin original spec.manifest) | keya: kiestai defined in observer_schema
keyd: lebidai
~badabum

Legend

biue: field originates from the spec.manifest file
lareen: field originates from the ks AP response
Ired background: field is observed

|vellow background: special control variables

litalic: field is added during mangling

_images/reconciliation_loop.png
Reso!

created on

AP

Current

Is obs:

Yes

Update r
sentto

Resource created
on real world

the resource

the current
state different
from the
status?

urce

[Actions on the Controller
(1 Actions on the Observer

state of

Wait some time
Interval

erved

equest Is
the API

with the newest

sta

tus.

Desired and current
state are different

Reconcll

performed

liation is

_images/scheduler_app_handler.png
LEGEND

Application received

by the Reflector Schedule application task
Reschedule application task

Application
in deleted or
falled state?

Fitering

Application Any
already scheduled cluster Any Calculate clusters
AND its specification matches all Cluster with defined rank based on
stayed the same application and available metrics and
since last constraints metrics? stickiness

scheduling? ?

Calculate clusters
rank based on
stickiness

pplication i
already in the
queue tobe
escheduled

Add to the queue
with a defined delay
(defaults to 60s)
before rescheduling

Remove clusters whose rank cannot be computed

YES

Application
received
isignored

Any
Cluster with
calculated
rank?

Select cluster
with best rank

Reschedule
check.

Is the application

already scheduled to

selected

cluster?

_images/rbac-minimal.png
Action list, 'get’
on resource
‘my-api:my-resource’

——| my-rolebinding

Action ‘update’,
“delete’ on resources
“first!, ‘second' of the
API"'my-other-api'

my-other-role

_images/rbac.png
User 3

RoleBinding 1AC

RoleBinding 2A

RoleBinding 2C

Role A

Action 'list', 'get' on
resource X

Action 'list', 'get' on
resource Y

Action ‘create on
resource Y

Role B

Action ‘update’,
‘delete’ on resource Z

Action ‘list', 'update’,
‘get’ on resource W

Role C

Action 'list', 'get' on
resource Z

_images/scheduler_cluster_handler.png
Cluster received
by the Reflector

Cluster in
Geleted/failed state or

contains kubeconfig or
bound to a
Cloud?

Any
Cloud with

matches all Calculate Cloud

defined rank based on its
ter and available ‘metrics
‘metrics?

2

Set Cloud rank to 0

Remove Cloud whose rank cannot be computed

Any
Select Cloud YES/ Cloud with \NO
with best rank calculated

rank?

SCHEDULE

_images/scheduler_magnum_cluster_handler.png
Magnum cluster

received by the
Reflector

fagnum
cluster in
deleted state or

YES

bound toa
project?,

NO|

Any

Any
05 project Galculate 05
matches all 05 projectwith project rank
metrcs?

Set 05 project rank
00

Remove OS project whose rank cannot be computed

Any
Select 05 project| YES /05 project with \NO
‘with best rank calculated

rank?

SCHEDULE

_images/dependency_graph_workflow.png
StartGC

Resources listed

Create graph from
listed resources

Update dependency
relation(s) (edges):

Resource received add or remove

by "watch"

Add resource entry
to graph (node)

Add dependency
relation(s) (edges)

DELETED Y Remove resources
s
event (nodes)

A 4

Wait Remove dependency
relations (edges)

P

_images/dependency_mechanism.png
APl resource

name: my-os-proj
kind: 05 Project
depends: None

¥

Dependency

name: my-magclus
kind:
MagnumCluster
depends:

- my-os-proj

F

¥

Dependent

name: my-clus
kind: Cluster
depends:

- my-magelus

T

name: my-app
kind: Application
depends:

us

Actual resource

Magnum

Cluster

Kubernetes

Application

_images/components.png
Metrics Provider

User 3
T Kubernetes
Cluster
Controller
Kubernetes

Cluster
Kubernetes
Application
Controller

Infrastructure
Controller
Infrastructure
Provider

Garbage Collector

Krake

Control Plane Real world objects

_images/dependency_graph_example.png
name: my-os-proj
kind: OSFroject

name: my-clus-3
Kind: Cluster
owners: None

owners: None

7

¥

name: my-mag-clus

name: my-app-3
kind: Application
owners:

kind: MagnumCluster - my-clus-3

owners:

~my-os-proj

1

name: my-clus-1 | | name: my-clus-2
Kind: Cluster Kind: Cluster
owners: owners:
- my-mag-clus - my-mag-clus

t f
name: my-app-1 | [name: my-app-2
Kind: Application | | kind: Application
owners: owners:
-my-clus-1 -my-clus-2

Relations on the AP

my-os-
project

Relations on the dependency graph

_images/garbage_collection_workflow.png
Putresource

dependencies into
the WorkQueue

v

api.resource_delete(res)

Set res.
metadata.deleted

Add
"cascade_deletion”
finalizer to res

Resource
received

"deletion”
state and
"cascade_deletion”,
finalizer on
res?

Yes

res has
dependents?
Checked by
dependency
graph

Yes

Issue DELETE

request for res
dependents

Legend

Watch Update

Yes

UPDATE

Remove
"cascade_deletion"
finalizer

_images/shutdown_hook.png
- 52 I
5 o
:
) 5e
» w —=> c
[} (=} = = o
- =0 o =
o0 = .9] ©
s B3| Bz k> o
8= L S5 15} =
50O - <N} % oy
¥4 o 2 <
[}
c
€
8
2 A
" ~
c
.. H
..................... L2 o
2
5
2
@

alt for imeout

Controller
(Default: 60s)

Kubernetes
Application

nav.xhtml

 Table of Contents

 		
 Welcome to Krake’s documentation!

 		
 Quickstart

 		
 User Documentation

 		
 Rok documentation

 		
 The kube API

 		
 The infra API

 		
 Common options

 		
 Warnings

 		
 Configuration

 		
 Configuration file or command-line options

 		
 Krake configuration

 		
 Controllers configuration

 		
 Common configuration:

 		
 Rok configuration

 		
 Custom Observer Schema

 		
 Purpose

 		
 Format

 		
 Usage

 		
 User Stories

 		
 Introduction

 		
 Demonstration of basic commands and workflow

 		
 Scheduling an Application using Labels and LabelConstraints

 		
 Scheduling an Application Using Metrics

 		
 OpenStack backends

 		
 Creation and deployment of a stateful application

 		
 Infrastructure providers

 		
 Scheduling a Cluster using Labels and LabelConstraints

 		
 Scheduling a Cluster using Metrics

 		
 Horizontal Cluster Scaling

 		
 HTTP Problem documentation

 		
 not-found-error

 		
 transaction-error

 		
 update-error

 		
 invalid-keystone-token

 		
 invalid-keycloak-token

 		
 resource-already-exists

 		
 Administrator Documentation

 		
 Set up Krake with Ansible

 		
 Prerequisites

 		
 Krake infrastructure deployment

 		
 Krake Ansible directory structure

 		
 Access through the gateway

 		
 Variables

 		
 Variables definition

 		
 Inventory

 		
 Inventory plugin

 		
 Inventory structure

 		
 Bootstrapping

 		
 Usage

 		
 Structure

 		
 Existing definitions

 		
 Security principles

 		
 Overview

 		
 Keystone authentication

 		
 Keycloak authentication

 		
 Certificate authentication

 		
 RBAC Authorization

 		
 Security Guidelines

 		
 CORS

 		
 Developer Documentation

 		
 Architecture

 		
 API

 		
 Control Plane

 		
 Concepts

 		
 Overview

 		
 API Conventions

 		
 Control Plane

 		
 Authentication and Authorization

 		
 Directories

 		
 Design Principles

 		
 API

 		
 Control Logic

 		
 Architecture

 		
 Extensibility

 		
 Availability

 		
 Development

 		
 Scheduling

 		
 Application handler

 		
 Cluster handler

 		
 Magnum cluster handler

 		
 Metrics and Metrics Providers

 		
 Constraints

 		
 Application hooks

 		
 Complete

 		
 Shutdown

 		
 TLS

 		
 Examples

 		
 Kubernetes Application Controller

 		
 Reconciliation loop

 		
 Kubernetes Application Observer

 		
 Reconciliation

 		
 Kubernetes Application Observer

 		
 Kubernetes Cluster Controller

 		
 Kubernetes Cluster Observer

 		
 Kubernetes Cluster Status Polling

 		
 States

 		
 Node Health

 		
 Infrastructure Controller

 		
 Reconciliation loop

 		
 States

 		
 Garbage Collection

 		
 Dependency mechanism

 		
 Overview

 		
 Garbage collection workflow

 		
 Dependency graph

 		
 API Generation

 		
 Role

 		
 Usage

 		
 Templating

 		
 Generated elements

 		
 TOSCA

 		
 Introduction

 		
 TOSCA Template

 		
 TOSCA/CSAR Workflow

 		
 Examples

 		
 Krake Reference

 		
 Module hierarchy

 		
 Krake

 		
 API Server

 		
 Client

 		
 Controllers

 		
 Data Abstraction

 		
 Client Reference

 		
 Fixtures

 		
 Command Line Parser

_static/ajax-loader.gif

_images/cluster_observer_loop.png
Resource
created on
APl

Resource created
on real world

Current state of
the resource
is observed

s
the current
state different
from the
status?.

Yes

Update request is
sent to the API

with the newest
status.

Desired and current
state are different

Status update is
performed

[Actions on the Controller
(71 Actions on the Observer

Wait some time
interval

No

_images/shutdown_hook__external_storage.png
Kubernetes

(Default: 60s)

." Cluster \
Kubernetes
H Application : :
Controller ! H ﬂ(ubemetes Pod / Deploymen\ H
: > Shutdown
H Service !
: i [/shutdown I :
' : ! Check for i
: ! 1 SIGTERM process end : Bucket
User \ | :
____________________ E Application E Persistent
i ' Data
ait for fimeout : « i Pull data

_images/tosca_workflow.png
User

Tanslation
TOSCA/CSAR to Kas manifest

E—
TOSCA
(YAML or URL)

Krake

Kubernetes
Application
Controller

T

Kes
manifest

TOSCAT
CSAR

T
CSAR
(URY i

APl

Kes

manifest

Kubernetes
Cluster

Kubernetes
Application

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

