
Krake
Release 1.0.0

Apr 11, 2023

Contents:

1 Quickstart 1

2 User Documentation 3
2.1 Rok documentation . 3

2.1.1 The kube API . 4
2.1.2 The infra API . 8
2.1.3 Common options . 14
2.1.4 Warnings . 14

2.2 Configuration . 14
2.2.1 Configuration file or command-line options . 15
2.2.2 Krake configuration . 18
2.2.3 Controllers configuration . 19
2.2.4 Common configuration: . 20
2.2.5 Rok configuration . 21

2.3 Custom Observer Schema . 21
2.3.1 Purpose . 21
2.3.2 Format . 21
2.3.3 Usage . 25

2.4 User Stories . 25
2.4.1 Introduction . 25
2.4.2 Demonstration of basic commands and workflow . 26
2.4.3 Scheduling an Application using Labels and LabelConstraints 28
2.4.4 Scheduling an Application Using Metrics . 29
2.4.5 OpenStack backends . 33
2.4.6 Creation and deployment of a stateful application . 34
2.4.7 Infrastructure providers . 34
2.4.8 Scheduling a Cluster using Labels and LabelConstraints 36
2.4.9 Scheduling a Cluster using Metrics . 37
2.4.10 Horizontal Cluster Scaling . 39

2.5 HTTP Problem documentation . 42
2.5.1 not-found-error . 43
2.5.2 transaction-error . 43
2.5.3 update-error . 43
2.5.4 invalid-keystone-token . 43
2.5.5 invalid-keycloak-token . 43
2.5.6 resource-already-exists . 43

i

3 Administrator Documentation 45
3.1 Set up Krake with Ansible . 45

3.1.1 Prerequisites . 45
3.1.2 Krake infrastructure deployment . 46
3.1.3 Krake Ansible directory structure . 46
3.1.4 Access through the gateway . 47

3.2 Variables . 48
3.2.1 Variables definition . 48

3.3 Inventory . 51
3.3.1 Inventory plugin . 51
3.3.2 Inventory structure . 51

3.4 Bootstrapping . 52
3.4.1 Usage . 53
3.4.2 Structure . 53
3.4.3 Existing definitions . 54

3.5 Security principles . 55
3.5.1 Overview . 55
3.5.2 Keystone authentication . 56
3.5.3 Keycloak authentication . 58
3.5.4 Certificate authentication . 60
3.5.5 RBAC Authorization . 60
3.5.6 Security Guidelines . 62
3.5.7 CORS . 66

4 Developer Documentation 67
4.1 Architecture . 67

4.1.1 API . 67
4.1.2 Control Plane . 67

4.2 Concepts . 70
4.2.1 Overview . 70
4.2.2 API Conventions . 70
4.2.3 Control Plane . 71
4.2.4 Authentication and Authorization . 71

4.3 Directories . 72
4.4 Design Principles . 72

4.4.1 API . 72
4.4.2 Control Logic . 73
4.4.3 Architecture . 73
4.4.4 Extensibility . 73
4.4.5 Availability . 74
4.4.6 Development . 74

4.5 Scheduling . 74
4.5.1 Application handler . 75
4.5.2 Cluster handler . 78
4.5.3 Magnum cluster handler . 79
4.5.4 Metrics and Metrics Providers . 82
4.5.5 Constraints . 84

4.6 Application hooks . 86
4.6.1 Complete . 86
4.6.2 Shutdown . 87
4.6.3 TLS . 87
4.6.4 Examples . 89

4.7 Kubernetes Application Controller . 90
4.7.1 Reconciliation loop . 90

ii

4.8 Kubernetes Application Observer . 94
4.8.1 Reconciliation . 94
4.8.2 Kubernetes Application Observer . 96

4.9 Kubernetes Cluster Controller . 98
4.10 Kubernetes Cluster Observer . 99

4.10.1 Kubernetes Cluster Status Polling . 99
4.10.2 States . 99
4.10.3 Node Health . 101

4.11 Infrastructure Controller . 102
4.11.1 Reconciliation loop . 103
4.11.2 States . 105

4.12 Garbage Collection . 106
4.12.1 Dependency mechanism . 106
4.12.2 Overview . 106
4.12.3 Garbage collection workflow . 108
4.12.4 Dependency graph . 110

4.13 API Generation . 113
4.13.1 Role . 113
4.13.2 Usage . 114
4.13.3 Templating . 114
4.13.4 Generated elements . 114

4.14 TOSCA . 116
4.14.1 Introduction . 116
4.14.2 TOSCA Template . 117
4.14.3 TOSCA/CSAR Workflow . 119
4.14.4 Examples . 119

4.15 Krake Reference . 121
4.15.1 Module hierarchy . 121
4.15.2 Krake . 122
4.15.3 API Server . 124
4.15.4 Client . 138
4.15.5 Controllers . 158
4.15.6 Data Abstraction . 185

4.16 Client Reference . 212
4.16.1 Fixtures . 212
4.16.2 Command Line Parser . 215

Python Module Index 219

Index 221

iii

iv

CHAPTER 1

Quickstart

A simple introduction to Krake can be found on the README on the official GitLab repository. You can find there
all the requirements and the different steps for the installation, as well as some basic commands and initiatory expla-
nations.

1

https://gitlab.com/rak-n-rok/krake/-/blob/master/README.md

Krake, Release 1.0.0

2 Chapter 1. Quickstart

CHAPTER 2

User Documentation

2.1 Rok documentation

The Rok utility has a command line interface with a few specific commands, that can be added one after the other to
refer to specific elements. The general syntax is

rok <api> <resource> <operation> <parameters>

The separate elements are:

api element: The name of the Krake API used. Different APIs are present to handle different kind of resources.
Example: kube for the Kubernetes API of Krake.

resource element: The name of the resource managed. Each API holds one or several resources it can handle.
Example: cluster for the Krake Clusters, which correspond to Kubernetes clusters.

operation element: The verb used for the operation to apply. For instance list can be used to get all instances
of one kind of resource, while delete can be used to remove a resource.

parameters element: The specific argument for the current operation. For instance, the -o | --output argu-
ment change the format of the response.

A few examples:

$ rok kube <...> # handle the kubernetes API resources

$ rok kube app <...> # handle the Application resources of the Kubernetes API

Register a cluster with the Kubernetes API using the minikube.yaml kubeconfig
$ rok kube cluster register --kubeconfig ../minikube.yaml

Create a cluster with the Kubernetes API using the tosca.yaml manifest
$ rok kube cluster create --file ../tosca.yaml test-cluster

3

Krake, Release 1.0.0

2.1.1 The kube API

This API can be used to manage Kubernetes clusters and start, update and delete applications on them, through Krake.

Base command: rok kube <...>

The Cluster resource: cluster

This resource manages Krake Cluster resources, which needs to be registered or created on Krake to be used. It
corresponds to a cluster on Kubernetes.

Base command: rok kube cluster <...>

register Add an existing cluster to the Kubernetes clusters registered in Krake on a specified namespace. Example:

rok kube cluster register -k <path_to_kubeconfig_file>

-k | --kubeconfig: the path to the kubeconfig file that refers to the cluster to register.

-n | --namespace (optional): The namespace to which the Cluster has to be added. If none is given, the
user namespace is selected.

-c | --context (optional): The name of the context to use from the kubeconfig file. Only one context
can be chosen at a time. If not context is specified, the current context of the kubeconfig file is chosen.

--global-metric (optional): The name and weight of of a global cluster metric in the form: <name>
<weight>. Can be specified multiple times.

-m | --metric (optional): The name and weight of a cluster metric in the form: <name> <weight>.
Can be specified multiple times.

-l | --label (optional): The key and the value of a cluster label in the form: <key>=<value>. Can be
specified multiple times.

-R | --custom-resource (optional): The name of custom resources definition in the form:
<plural>.<group> which is supported by the cluster. Can be specified multiple times.

create Add a new cluster to the Kubernetes clusters registered in Krake on a specified namespace. Example:

rok kube cluster create <cluster_name> -f <path_to_tosca_template>

name: The name of the new Cluster, as stored by Krake (can be arbitrary). The same name cannot be used
twice in the same namespace.

-f | --file: The path to the TOSCA template file that describes the desired Cluster.

-n | --namespace (optional): The namespace to which the Cluster has to be added. If none is given, the
user namespace is selected.

--global-metric (optional): The name and weight of a global cluster metric in the form: <name>
<weight>. Can be specified multiple times.

-m | --metric (optional): The name and weight of a cluster metric in the form: <name> <weight>.
Can be specified multiple times.

-l | --label (optional): The key and the value of a cluster label in the form: <key>=<value>. Can be
specified multiple times.

-R | --custom-resource (optional): The name of custom resources definition in the form:
<plural>.<group> which is supported by the cluster. Can be specified multiple times.

4 Chapter 2. User Documentation

Krake, Release 1.0.0

-L | --cloud-label-constraint (optional): The name and value of a constraint for labels of the
cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud
that matches the given label constraint. Can be specified multiple times, see Constraints.

-M | --cloud-metric-constraint (optional): The name and value of a constraint for metrics of the
cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud
that matches the given metric constraint. Can be specified multiple times, see Constraints.

--backoff (optional): multiplier applied to backoff_delay between attempts. default: 1 (no backoff)

backoff_delay (optional): delay [s] between attempts. default: 1

backoff_limit (optional): a maximal number of attempts. If the attempt to handle the cluster failed, it
will transfer to the Cluster State DEGRADED, instead of directly going into the State OFFLINE. Default: -1
(infinite) default: -1 (infinite)

list List all Cluster of a namespace.

-n | --namespace (optional): The namespace from which the Clusters have to be listed. If none is given,
the user namespace is selected.

get Request information about a specific Cluster.

name: The name of the Cluster to fetch.

-n | --namespace (optional): The namespace from which the Clusters have to be retrieved. If none is
given, the user namespace is selected.

update Request a change of the current state of an existing Cluster.

name: The name of the Cluster to update.

-k | --kubeconfig (optional): The path to the kubeconfig file that describes the Cluster with the updated
fields.

-f | --file (optional): The path to the TOSCA template file that describes the desired Cluster with the
updated fields.

-n | --namespace (optional): The namespace from which the Clusters have to be taken. If none is given,
the user namespace is selected.

-c | --context (optional): The name of the context to use from the kubeconfig file. Only one context
can be chosen at a time. If not context is specified, the current context of the kubeconfig file is chosen.

--global-metric (optional): The name and weight of a global cluster metric in the form: <name>
<weight>. Can be specified multiple times.

-m | --metric (optional): The name and weight of a cluster metric in the form: <name> <weight>.
Can be specified multiple times. Previous metrics will be kept by default.

‘‘–remove-existing-metrics‘‘(optional): Remove all existing metrics on update. If new metrics are specified
with the --metric argument, they will be used instead.

-l | --label (optional): The key and the value of a cluster label in the form: <key>=<value>. Can be
specified multiple times. Previous labels will be kept by default.

‘‘–remove-existing-labels‘‘(optional): Remove all existing labels on update. If new labels are specified with
the --label argument, they will be used instead.

-R | --custom-resource (optional): The name of custom resources definition in the form:
<plural>.<group> which is supported by the cluster. Can be specified multiple times.

-L | --cloud-label-constraint (optional): The name and value of a constraint for labels of the
cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud

2.1. Rok documentation 5

Krake, Release 1.0.0

that matches the given label constraint. Can be specified multiple times, see Constraints. Previous con-
straints will be kept by default.

‘‘–remove-existing-cloud-label-constraints‘‘(optional): Remove all existing cloud label constraints on up-
date. If new labels are specified with the --label argument, they will be used instead.

-M | --cloud-metric-constraint (optional): The name and value of a constraint for metrics of the
cloud in the form: <label> expression <value>. The cluster will be deployed only on the cloud
that matches the given metric constraint. Can be specified multiple times, see Constraints. Previous
constraints will be kept by default.

‘‘–remove-existing-cloud-metric-constraints‘‘(optional): Remove all existing cloud metric constraints on
update. If new metrics are specified with the --cloud-metric-constraint argument, they will
be used instead.

--backoff (optional): multiplier applied to backoff_delay between attempts. default: 1 (no backoff)

--backoff_delay (optional): delay [s] between attempts. default: 1

--backoff_limit (optional): a maximal number of attempts, default: -1 (infinite)

delete Request the deletion of a specific Cluster from a namespace.

-n | --namespace (optional): The namespace from which the Cluster have to be deleted. If none is given,
the user namespace is selected.

--force (optional): Force the deletion of resources directly from the Krake Database.

The Application resource: app

This resource manages Krake Applications resources, which need to be registered on Krake to be managed. It corre-
sponds to a Kubernetes resource.

Tip: Krake is able to manage applications that are described by Kubernetes manifests files as well as by TOSCA
templates or CSAR archives, see TOSCA.

Base command: rok kube app <...>

create Add a new Application to the ones registered on Krake on a specified namespace. Example:

rok kube app create <application_name> -f <path_to_manifest_or_path_to_tosca_
→˓template>

name: The name of the new Application, as stored by Krake (can be arbitrary). The same name cannot be used
twice in the same namespace.

-f | --file: The path to the manifest file or the TOSCA template file that describes the new Application.

-u | --url: The URL of the TOSCA template file or the CSAR archive that describes the new Application.

-O | --observer_schema (optional): The path to the custom observer schema file, specifying the fields
of the Kubernetes resources defined in the manifest file which should be observed. If none is given, all
fields defined in the manifest file are observed. The custom observer schema could be used even when the
application is described by the TOSCA template or CSAR archive.

-n | --namespace (optional): The namespace to which the Application has to be added. If none is given,
the user namespace is selected.

--hook-complete (optional): The complete hook, which allows an Application to send a completion signal
to the API.

6 Chapter 2. User Documentation

Krake, Release 1.0.0

--hook-shutdown (optional): The shutdown hook, which allows the graceful shutdown of the Application.
Can have an additional timeout value after the argument.

-l | --label (optional): The key and the value of a cluster label in the form: <key>=<value>. Can be
specified multiple times. Previous labels will be kept by default.

‘‘–remove-existing-labels‘‘(optional): Remove all existing labels on update. If new labels are specified with
the --label argument, they will be used instead.

-R | --cluster-resource-constraint (optional): The name of custom resources definition con-
straint in form: <plural>.<group>. The application will be deployed only on the clusters with given
custom definition support. Can be specified multiple times. Previous resource constraints will be kept by
default.

‘‘–remove-existing-resource-constraints‘‘(optional): Remove all existing resource constraints on update. If
new metrics are specified with --cluster-resource-constraint, they will be used instead.

-L | --cluster-label-constraint (optional): The name and value of a constraint for labels of the
cluster in the form: <label> expression <value>. The application will be deployed only on the
cluster that matches the given label constraint. Can be specified multiple times, see Constraints. Previous
label constraints will be kept by default.

‘‘–remove-existing-label-constraints‘‘(optional): Remove all existing label constraints on update. If new
label constraints are specified with --cluster-label-constraint, they will be used instead.

-M | --cluster-metric-constraint (optional): The name and value of a constraint for metrics of
the cluster in the form: <label> expression <value>. The application will be deployed only
on the cluster that matches the given metric constraint. Can be specified multiple times, see Constraints.
Previous metric constraints will be kept by default.

‘‘–remove-existing-metric-constraints‘‘(optional): Remove all existing metric constraints on update. If new
metric constraints are specified with --cluster-metric-constraint, they will be used instead.

--backoff (optional): multiplier applied to backoff_delay between attempts to handle the application.
default: 1 (no backoff)

--backoff_delay (optional): delay [s] between attempts to handle the application. default: 1

--backoff_limit (optional): a maximal number of attempts to handle the application. If the attempt to
handle the application failed, it will transfer to the Application State DEGRADED, instead of directly going
into the State FAILED. Default: -1 (infinite)

list List all Applications of a namespace.

-n | --namespace (optional): The namespace from which the Applications have to be listed. If none is
given, the user namespace is selected.

get Request information about a specific Application.

name: The name of the Application to fetch.

-n | --namespace (optional): The namespace from which the Applications have to be retrieved. If none
is given, the user namespace is selected.

update Request a change of the current state of an existing Application.

name: The name of the Application to update.

-f | --file: The path to the manifest file or TOSCA template file that describes the Application with the
updated fields.

-u | --url: The URL of the TOSCA template file or the CSAR archive that describes the Application with
the updated fields.

2.1. Rok documentation 7

Krake, Release 1.0.0

-O | --observer_schema (optional): The path to the custom observer schema file, specifying the fields
of the Kubernetes resources defined in the manifest file which should be observed. If none is given, the
observer schema is not udpated. The custom observer schema could be used even when the application is
described by the TOSCA template or CSAR archive.

-n | --namespace (optional): The namespace from which the Applications have to be taken. If none is
given, the user namespace is selected.

--hook-complete (optional): The complete hook, which allows an Application to send a completion signal
to the API.

--hook-shutdown (optional): The shutdown hook, which allows the graceful shutdown of the Application.
Can have an additional timeout value after the argument.

-R | --cluster-resource-constraint (optional): The name of custom resources definition con-
straint in form: <plural>.<group>. The application will be deployed only on the clusters with given
custom definition support. Can be specified multiple times.

-L | --cluster-label-constraint (optional): The name and value of a constraint for labels of the
cluster in the form: <label> expression <value>. The application will be deployed only on the
cluster that matches the given label constraint. Can be specified multiple times, see Constraints.

-M | --cluster-metric-constraint (optional): The name and value of a constraint for metrics of
the cluster in the form: <label> expression <value>. The application will be deployed only on
the cluster that matches the given metric constraint. Can be specified multiple times, see Constraints.

--backoff (optional): multiplier applied to backoff_delay between attempts. default: 1 (no backoff)

backoff_delay (optional): delay [s] between attempts. default: 1

backoff_limit (optional): a maximal number of attempts, default: -1 (infinite)

delete Request the deletion of a specific Application from a namespace.

name: The name of the Application to delete.

-n | --namespace (optional): The namespace from which the Application have to be deleted. If none is
given, the user namespace is selected.

--force (optional): Force the deletion an Application directly from the Krake Database.

2.1.2 The infra API

This API can be used to manage the following infrastructure resources:

• GlobalInfrastructureProvider

• InfrastructureProvider

• GlobalCloud

• Cloud

Base command: rok infra <...>

The GlobalInfrastructureProvider resource: globalinfrastructureprovider

This resource manages Krake GlobalInfrastructureProvider non-namespaced resources, which needs to be regis-
tered on Krake to be used. It corresponds to an infrastructure provider software, that is able to deploy infrastructures
(e.g. Virtual machines, Kubernetes clusters, etc.) on IaaS Cloud deployments (e.g. OpenStack, AWS, etc.).

Krake currently supports the following GlobalInfrastructureProvider software (types):

8 Chapter 2. User Documentation

Krake, Release 1.0.0

• IM (Infrastructure Manager) tool developed by the GRyCAP research group

Base command: rok infra globalinfrastructureprovider <...> Available aliases: - rok infra
gprovider <...> - rok infra gip <...>

Note: The global resource is a non-namespaced resource that could be used by any (even namespaced) Krake
resource. For example, the global infrastructure provider resource could be used by any cloud which needs to be
managed by the infrastructure provider.

register Add a new GlobalInfrastructureProvider to the ones registered on Krake. Example:

rok infra gprovider register <provider_name> \
--type <provider_type> \
--url <provider_api_url> \
--username <provider_api_username> \
--password <provider_api_password>

name: The name of the new GlobalInfrastructureProvider, as stored by Krake (can be arbitrary). The same
name cannot be used twice.

--type: The GlobalInfrastructureProvider type. Type of the infrastructure provider that will be registered on
Krake. Currently, only IM infrastructure provider is supported, and valid type is: im.

--url: The GlobalInfrastructureProvider API url. Valid together with –type im.

--username (optional): The GlobalInfrastructureProvider API username. Valid together with –type im.

--password (optional): The GlobalInfrastructureProvider API password. Valid together with –type im.

--token (optional): The GlobalInfrastructureProvider API token. Valid together with –type im.

list List all GlobalInfrastructureProviders.

get Request information about a specific GlobalInfrastructureProvider.

name: The name of the GlobalInfrastructureProvider to fetch.

update Request a change of the current state of an existing GlobalInfrastructureProvider.

name: The name of the GlobalInfrastructureProvider to update.

--url (optional): The GlobalInfrastructureProvider API url to update. Valid together with –type im.

--username (optional): The GlobalInfrastructureProvider API username to update. Valid together with
–type im.

--password (optional): The GlobalInfrastructureProvider API password to update. Valid together with
–type im.

--token (optional): The GlobalInfrastructureProvider API token to update. Valid together with –type im.

delete Request the deletion of a specific GlobalInfrastructureProvider.

name: The name of the GlobalInfrastructureProvider to delete.

The InfrastructureProvider resource: infrastructureprovider

This resource manages Krake InfrastructureProvider namespaced resources, which needs to be registered on Krake
to be used. It corresponds to an infrastructure provider software, that is able to deploy infrastructures (e.g. Virtual
machines, Kubernetes clusters) on IaaS Cloud deployments.

Krake currently supports the following InfrastructureProvider software (types):

2.1. Rok documentation 9

https://github.com/grycap/im
https://github.com/grycap/im

Krake, Release 1.0.0

• IM (Infrastructure Manager) tool developed by the GRyCAP research group

Base command: rok infra infrastructureprovider <...>

Available aliases:

• rok infra provider <...>

• rok infra ip <...>

Note: This resource is a namespaced resource that could be used by the Krake resources from the same namespace.
For example, the infrastructure provider resource could be used by any cloud which lives in the same namespace as
the infrastructure provider.

register Add a new InfrastructureProvider to the ones registered on Krake. Example:

rok infra provider register <provider_name> \
--type <provider_type> \
--url <provider_api_url> \
--username <provider_api_username> \
--password <provider_api_password>

name: The name of the new InfrastructureProvider, as stored by Krake (can be arbitrary). The same name
cannot be used twice in the same namespace.

-n | --namespace (optional): The namespace to which the InfrastructureProvider have to be added. If
none is given, the user namespace is selected.

--type: The InfrastructureProvider type. Type of the infrastructure provider that will be registered on Krake.
Currently, only IM infrastructure provider is supported, and valid type is: im.

--url: The InfrastructureProvider API url. Valid together with –type im.

--username (optional): The InfrastructureProvider API username. Valid together with –type im.

--password (optional): The InfrastructureProvider API password. Valid together with –type im.

--token (optional): The InfrastructureProvider API token. Valid together with –type im.

list List all InfrastructureProviders of a namespace.

-n | --namespace (optional): The namespace from which the InfrastructureProvider have to be listed. If
none is given, the user namespace is selected.

get Request information about a specific InfrastructureProvider.

name: The name of the InfrastructureProvider to fetch.

-n | --namespace (optional): The namespace from which the InfrastructureProvider have to be retrieved.
If none is given, the user namespace is selected.

update Request a change of the current state of an existing InfrastructureProvider.

name: The name of the InfrastructureProvider to update.

-n | --namespace (optional): The namespace from which the InfrastructureProvider have to be taken. If
none is given, the user namespace is selected.

--url (optional): The InfrastructureProvider API url to update. Valid together with –type im.

--username (optional): The InfrastructureProvider API username to update. Valid together with –type im.

--password (optional): The InfrastructureProvider API password to update. Valid together with –type im.

--token (optional): The InfrastructureProvider API token to update. Valid together with –type im.

10 Chapter 2. User Documentation

https://github.com/grycap/im
https://github.com/grycap/im

Krake, Release 1.0.0

delete Request the deletion of a specific InfrastructureProvider from a namespace.

name: The name of the InfrastructureProvider to delete.

-n | --namespace (optional): The namespace from which the InfrastructureProvider have to be deleted.
If none is given, the user namespace is selected.

The GlobalCloud resource: globalcloud

This resource manages Krake GlobalCloud non-namespaced resources, which needs to be registered on Krake to
be used. It corresponds to an IaaS Cloud deployments (e.g. OpenStack, AWS, etc.) that will be managed by the
infrastructure provider software. GlobalCloud resource could contain also metrics and labels, that could be used in
cluster scheduling.

Krake currently supports the following GlobalCloud cloud software (types):

• OpenStack

Base command: rok infra globalcloud <...>

Available aliases:

• rok infra gcloud <...>

• rok infra gc <...>

Note: The global resource is a non-namespaced resource that could be used by any (even namespaced) Krake
resource. For example, the global cloud resource could be used by any cluster which needs to be scheduled to some
cloud.

register Add a new GlobalCloud to the ones registered on Krake. Example:

rok infra gcloud register <cloud_name> \
--type <cloud_type> \
--url <cloud_identity_service_url> \
--username <cloud_username> \
--password <cloud_password> \
--project <cloud_project_name> \
--global-infra-provider <global_infra_provider_name>

name: The name of the new GlobalCloud, as stored by Krake (can be arbitrary). The same name cannot be
used twice.

--type: The GlobalCloud type. Type of the cloud that will be registered on Krake. Currently, only OpenStack
cloud software is supported, and valid type is: openstack.

--url: URL to OpenStack identity service (Keystone). Valid together with –type openstack.

--username: Username or UUID of OpenStack user. Valid together with –type openstack.

--password: Password of OpenStack user. Valid together with –type openstack.

--project: Name or UUID of the OpenStack project. Valid together with –type openstack.

--global-infra-provider: Global infrastructure provider name for cloud management. Valid together
with –type openstack.

--domain-name (optional): Domain name of the OpenStack user. Valid together with –type openstack.

--domain-id (optional): Domain ID of the OpenStack project. Valid together with –type openstack.

2.1. Rok documentation 11

https://www.openstack.org/
https://www.openstack.org/

Krake, Release 1.0.0

--global-metric (optional): The name and weight of a global cloud metric in form: <name>
<weight>. Can be specified multiple times.

-l | --label (optional): The key and the value of cloud label in form: <key>=<value>. Can be speci-
fied multiple times.

list List all GlobalClouds.

get Request information about a specific GlobalCloud.

name: The name of the GlobalCloud to fetch.

update Request a change of the current state of an existing GlobalCloud.

name: The name of the GlobalCloud to update.

--url (optional): URL to OpenStack identity service (Keystone) to update. Valid together with –type open-
stack.

--username (optional): Username or UUID of OpenStack user to update. Valid together with –type open-
stack.

--password (optional): Password of OpenStack user to update. Valid together with –type openstack.

--project (optional): Name or UUID of the OpenStack project to update. Valid together with –type open-
stack.

--global-infra-provider (optional): Global infrastructure provider name for cloud management to
update. Valid together with –type openstack.

--domain-name (optional): Domain name of the OpenStack user to update. Valid together with –type open-
stack.

--domain-id (optional): Domain ID of the OpenStack project to update. Valid together with –type open-
stack.

--global-metric (optional): The name and weight of cloud global metric in form: <name>
<weight>. Can be specified multiple times.

-l | --label (optional): The key and the value of cloud label in form: <key>=<value>. Can be speci-
fied multiple times.

delete Request the deletion of a specific GlobalCloud.

name: The name of the GlobalCloud to delete.

The Cloud resource: cloud

This resource manages Krake Cloud namespaced resources, which needs to be registered on Krake to be used. It
corresponds to an IaaS Cloud deployments (e.g. OpenStack, AWS, etc.) that will be managed by the infrastructure
provider software. Cloud resource could contain also metrics and labels, that could be used in cluster scheduling.

Krake currently supports the following GlobalCloud cloud software (types):

• OpenStack

Base command: rok infra cloud <...>

Note: This resource is a namespaced resource that could be used by the Krake resources from the same namespace.
For example, the cloud resource could be used by any cluster which lives in the same namespace as the cloud.

register Add a new Cloud to the ones registered on Krake. Example:

12 Chapter 2. User Documentation

https://www.openstack.org/

Krake, Release 1.0.0

rok infra cloud register <cloud_name> \
--type <cloud_type> \
--url <cloud_identity_service_url> \
--username <cloud_username> \
--password <cloud_password> \
--project <cloud_project_name> \
--infra-provider <infra_provider_name>

name: The name of the new Cloud, as stored by Krake (can be arbitrary). The same name cannot be used twice
in the same namespace.

-n | --namespace (optional): The namespace to which the Cloud have to be added. If none is given, the
user namespace is selected.

--type: The Cloud type. Type of the cloud that will be registered on Krake. Currently, only OpenStack cloud
software is supported, and valid type is: openstack.

--url: URL to OpenStack identity service (Keystone). Valid together with –type openstack.

--username: Username or UUID of OpenStack user. Valid together with –type openstack.

--password: Password of OpenStack user. Valid together with –type openstack.

--project: Name or UUID of the OpenStack project. Valid together with –type openstack.

--infra-provider (optional): Infrastructure provider name for cloud management. Valid together with
–type openstack.

--global-infra-provider (optional): Global infrastructure provider name for cloud management to
update. Valid together with –type openstack.

--domain-name (optional): Domain name of the OpenStack user. Valid together with –type openstack.

--domain-id (optional): Domain ID of the OpenStack project. Valid together with –type openstack.

--global-metric (optional): The name and weight of cloud global metric in form: <name>
<weight>. Can be specified multiple times.

-m | --metric (optional): The name and weight of cloud metric in form: <name> <weight>. Can be
specified multiple times.

-l | --label (optional): The key and the value of cloud label in form: <key>=<value>. Can be speci-
fied multiple times.

list List all Clouds of a namespace.

-n | --namespace (optional): The namespace from which the Cloud have to be listed. If none is given,
the user namespace is selected.

get Request information about a specific Cloud.

name: The name of the Cloud to fetch.

-n | --namespace (optional): The namespace from which the Cloud have to be retrieved. If none is
given, the user namespace is selected.

update Request a change of the current state of an existing Cloud.

name: The name of the Cloud to update.

-n | --namespace (optional): The namespace from which the Cloud have to be taken. If none is given,
the user namespace is selected.

--url (optional): URL to OpenStack identity service (Keystone) to update. Valid together with –type open-
stack.

2.1. Rok documentation 13

https://www.openstack.org/

Krake, Release 1.0.0

--username (optional): Username or UUID of OpenStack user to update. Valid together with –type open-
stack.

--password (optional): Password of OpenStack user to update. Valid together with –type openstack.

--project (optional): Name or UUID of the OpenStack project to update. Valid together with –type open-
stack.

--infra-provider (optional): Infrastructure provider name for cloud management to update. Valid to-
gether with –type openstack.

--global-infra-provider (optional): Global infrastructure provider name for cloud management to
update. Valid together with –type openstack.

--domain-name (optional): Domain name of the OpenStack user to update. Valid together with –type open-
stack.

--domain-id (optional): Domain ID of the OpenStack project to update. Valid together with –type open-
stack.

--global-metric (optional): The name and weight of cloud global metric in form: <name>
<weight>. Can be specified multiple times.

-m | --metric (optional): The name and weight of cloud metric in form: <name> <weight>. Can be
specified multiple times.

-l | --label (optional): The key and the value of cloud label in form: <key>=<value>. Can be speci-
fied multiple times.

delete Request the deletion of a specific Cloud from a namespace.

name: The name of the Cloud to delete.

-n | --namespace (optional): The namespace from which the Cloud have to be deleted. If none is given,
the user namespace is selected.

2.1.3 Common options

These options are common to all commands:

-o | --output <format> (optional): The format of the displayed response. Three are available: YAML:
yaml, JSON: json or table: table.

2.1.4 Warnings

Warning messages are issued in situations where it is useful to alert the user of some condition in a Krake, which may
exhibit errors or unexpected behavior. Warnings standard library is used, hence the warning messages could be filtered
by PYTHONWARNINGS environment variable.

An example to disable all warnings:

$ PYTHONWARNINGS=ignore rok kube app create <...>

2.2 Configuration

This sections describes the configuration of Krake components and Rok. The different parameters, their value and role
will be described here

14 Chapter 2. User Documentation

https://docs.python.org/3/library/warnings.html

Krake, Release 1.0.0

Note: If an example value is specified for a parameter, it means this parameter has no default value in Krake.

2.2.1 Configuration file or command-line options

There are two different ways to configure Krake components:

• using the configuration files (also for Rok);

• using command-line options (only for Krake components).

Configuration files

There are 7 different configuration files:

• api.yaml for the Krake API;

• scheduler.yaml for the Scheduler as controller;

• kubernetes_application.yaml for the Kubernetes Application controller;

• kubernetes_cluster.yaml for the Kubernetes Cluster controller;

• garbage_collection.yaml for the Garbage Collector as controller;

• infrastructure.yaml for the Infrastructure controller;

• rok.yaml for the Rok utility.

For each one of them except rok.yaml, a template is present in the config directory. They end with the .
template extension. For Rok, the template configuration file is in the main directory of Krake.

Generate configuration

From the templates, actual configuration files can be generated using the krake_generate_config script. The
templates have parameters that can be overwritten by the script. It allows setting some parameters using command-line
options. The arguments and available options are:

<src_files> <src_files> ...<src_files> (list of file paths) Positional arguments: the list of template
files that will be used for generation.

--dst (path to a directory) Optional argument: the directory in which the generated files will be created. Default:
. (current directory).

--tls-enabled If used, set the TLS support to enabled between all Krake components. By default, TLS is dis-
abled.

--cert-dir <cert_dir> (path to a directory) Set the directory in which the certificates for the TLS commu-
nication should be stored. Default: "tmp/pki".

--allow-anonymous If enabled, anonymous requests are accepted by the API. See Authentication. Disabled by
default for the generation.

--keystone-authentication-enabled Enable the Keystone authentication as one of the authentication
mechanisms. See Authentication. Disabled by default for the generation.

--keystone-authentication-endpoint Endpoint to connect to the keystone service. See Authentication.
Default: "http://localhost:5000/v3".

2.2. Configuration 15

Krake, Release 1.0.0

--keycloak-authentication-enabled Enable the Keycloak authentication as one of the authentication
mechanisms. See Authentication. Disabled by default for the generation.

--keycloak-authentication-endpoint Endpoint to connect to the Keycloak service. See Authentication.
Default: "http://localhost:9080".

--keycloak-authentication-realm Keycloak realm to use on the provided endpoint. See Authentication.
Default: krake.

--static-authentication-enabled Enable the static authentication as one of the authentication mecha-
nisms. See Authentication. Disabled by default.

--static-authentication-username Name of the user that will authenticate through static authentication.
See Authentication. Default: "system:admin".

--cors-origin URL or wildcard for the ‘Access-Control-Allow-Origin’ of the CORS system on the API. Default:
*.

--authorization-mode Authorization mode to use for the requests sent to the API. Only ‘RBAC’ should be
used in production. See Authorization. Default: always-allow.

--api-host <api_host> (Address) Host that will be used to create the endpoint of the API for the controllers.
Default: "localhost".

--api-port <api_port> (integer) Port that will be used to create the endpoint of the API for the controllers..
Default: 8080.

--etcd-version <etcd_version> (string) The etcd database version. Default: v3.3.13.

--etcd-host <etcd_host> (Address) Host for the API to use to connect to the etcd database. Default: 127.
0.0.1.

--etcd-port <etcd_port> (integer) Port for the API to use to connect to the etcd database. Default: 2379.

--etcd-port <etcd_port> (integer) Peer port for the etcd endpoint. Default: 2380.

--docs-problem-base-url <docs_problem_base_url> (string) URL of the problem documenta-
tion. Default: https://rak-n-rok.readthedocs.io/projects/krake/en/latest/user/
problem.

--docker-daemon-mtu <docker_daemon_mtu> (integer) The Docker daemon MTU. Default: 1450.

--worker-count <worker_count> (integer) Number of worker to start on the controller. Workers are the
units that handle resources. Default: 5.

--debounce <debounce> (float) For the controllers: the worker queue has a mechanism to delay a received
state of a resource with a timer. A newer state received will then restart the timer. If a resource is updated a few
times in one second, this mechanism prevents having to handle it each time by another component, and wait for
the latest value. Default: 1.0.

--reschedule-after Time in seconds after which a resource will be rescheduled. See Scheduling. Default: 60.

--stickiness “Stickiness” weight to express migration overhead in the normalized ranking computation. See
Scheduling. Default: 0.1.

--poll-interval Time in seconds for the Infrastructure Controller to ask the infrastructure provider client again
after a modification of a cluster. Default: 30.

--complete-hook-user For the complete hook, set the name of the user that will be defined as CN of the
generated certificates. See Complete. Default: "system:complete-hook".

--complete-hook-cert-dest For the complete hook, set the path to the mounted directory, in which the
certificates to communicate with the API will be stored. See Complete. Default: "/etc/krake_cert".

16 Chapter 2. User Documentation

Krake, Release 1.0.0

--complete-hook-env-token For the complete hook, set the name of the environment variable that
contain the value of the token, which will be given to the Application. See Complete. Default:
"KRAKE_COMPLETE_TOKEN".

--complete-hook-env-url For the complete hook, set the name of the environment variable that con-
tain the URL of the Krake API, which will be given to the Application. See Complete. Default:
"KRAKE_COMPLETE_URL".

--external-endpoint (str) If set, replaces the value of the URL host and port of the endpoint given to the
Applications which have the ‘complete’ hook enabled. See Complete.

--logging-level (str) To set the logging level of a controller. Default: INFO.

--logging-handler (str) To set the handler to use for logging. This lets one choose whether the logging mes-
sages should be printed to stdout or saved to a file. Options are ‘console’ and ‘file’. Default: console.

-h, --help Display the help message and exit the script.

Examples

To create default configuration files for Krake, the following command can be used in the main directory:

krake_generate_config config/*template

This will create all Krake configuration files in the main directory of Krake.

To create default configuration files for Rok, the following command can be used in the main directory:

krake_generate_config rok.yaml.template

This will create the Rok configuration file in the main directory of Krake.

The two previous commands can be combined together to generate both Rok and Krake configuration files at the same
time:

krake_generate_config config/*template rok.yaml.template

This will create Krake and Rok configuration files in the main directory of Krake.

To create a new configuration for the API on the tmp directory with a different etcd database endpoint, the following
can be used:

krake_generate_config --dst /tmp config/api.yaml.template --etcd-host newhost.org --
→˓etcd-port 1234

Command-line options

Apart from the configuration files, specific command-line options are available for the Krake components. They are
created automatically from the configuration parameters. Nested options are generated by concatenating the names of
section with dashes characters ("-"). For example, the authentication.allow_anonymous YAML element
becomes the --authentication-allow-anonymous option.

There is one option for each parameter of the configuration, except the elements that are lists for the moment. Booleans
are converted into optional flags.

2.2. Configuration 17

Krake, Release 1.0.0

2.2.2 Krake configuration

All configuration options for the Krake API are described here.

port (integer) This parameter defines the port to which the Krake API will listen to for incoming requests.

etcd This section defines the parameters to let the API communicate with the ETCD database.

host (string) Address of the database. Example: 127.0.0.1

port (integer), default: 2379 Port to communicate with the database.

retry_transactions (int): Number of times a database transaction will be attempted again if it failed the first
time due to concurrent write on the same resource.

tls This section defines the parameters needed for TLS support. If TLS is enabled, all other components and clients
need TLS support to communicate with the API.

enabled (boolean) Activate or deactivate the TLS support. Example: false

cert (path) Set the path to the client certificate authority. Example: tmp/pki/system:api-server.pem

key (path) Set the path to the client certificate. Example: tmp/pki/system:api-server-key.pem

client_ca (path) Set the path to the client key. Example: tmp/pki/ca.pem

Authentication and authorization

authentication This section defines the method for authenticating users that connect to the API. Three methods are
available: keystone, keycloak and static. A user not recognized can still send request if anonymous are allowed.

allow_anonymous (boolean), default: false Enable the “anonymous” user. Any request executed without
a user being authenticated will be processed as user system:anonymous.

strategy This section describes the parameters for the methods of authentication.

keystone The Keystone service of OpenStack can be used as authentication method.

enabled (boolean) Set Keystone as authentication method. Example: false

endpoint (URL) Endpoint of the Keystone service. Example: http://localhost:5000/v3

keycloak The Keycloak service can be used as authentication method.

enabled (boolean) Set Keycloak as authentication method. Example: false

endpoint (URL) Endpoint of the Keycloak service. Example: http://localhost:9080

realm (str) Keycloak realm to use at the provided endpoint. Example: krake

static The user is set here, and the API will authenticate all requests as being sent by this user.

enabled (boolean) Set the static method as authentication method. Example: true

name (string) This is the name of the user that will be set as sending all requests. Example: system

cors-origin (string), default * For the CORS mechanism of Krake. Set the default allowed URL, which cor-
responds to the Access-Control-Allow-Origin response header.

authorization (enumeration) This parameter defines the mode for allowing users to perform specific actions (e.g.
“create” or “delete” a resource). Three modes are available: RBAC, always-allow, always-deny.

18 Chapter 2. User Documentation

Krake, Release 1.0.0

2.2.3 Controllers configuration

The general configuration is the same for each controller. Additional parameters can be added for specific controllers,
depending on the implementation. Here are the common parameters:

api_endpoint (URL) Address of the API to be reached by the current controller. Example: http://
localhost:8080

debounce (float) For the worker queue of the controller: set the debounce time to delay the handling of a resource,
and get any updated state in-between. Example 1.5

tls This section defines the parameters needed for TLS support. If TLS support is enabled on the API, it needs to be
enabled on the controllers to let them communicate with the API.

enabled (boolean) Activate or deactivate the TLS support. If the API uses only TLS, then this should be set to
true. This has priority over the scheme given by api_endpoint. Example: false

client_ca (path) Set the path to the client certificate authority. Example: ./tmp/pki/ca.pem

client_cert (path) Set the path to the client certificate. Example: ./tmp/pki/jc.pem

client_key (path) Set the path to the client key. Example: ./tmp/pki/jc-key.pem

Kubernetes application controller

Additional parameters, specific for the Kubernetes application controller:

hooks (string) All the parameters for the application hooks are described here. See also Complete.

complete (string) This section defines the parameters needed for the Application complete hook. If is not
defined the Application complete hook is disabled.

hook_user (string) Name of the user that will be set as CN in the certificates generated for the hook.
If RBAC is enabled, should match a RoleBinding for the applications/complete subre-
source. Example system:complete-hook

intermediate_src (path) Path to the certificate which will be used to sign new generated certifi-
cates for the hook. Not needed if TLS is not enabled. Example: /etc/krake/certs/
system:complete-signing.pem

intermediate_key_src (path) Path to the key of the certificate which will be used to sign new generated
certificates for the hook. Not needed if TLS is not enabled. Example: /etc/krake/certs/
system:complete-signing-key.pem

cert_dest (path) Set the path to the certificate authority on the deployed Application. Example: /etc/
krake_cert

env_token (string) Name of the environment variable, which stores Krake authentication token. Exam-
ple: KRAKE_COMPLETE_TOKEN

env_url (string) Name of the environment variable, which stores Krake complete hook URL. Exam-
ple: KRAKE_COMPLETE_URL

external_endpoint (URL, optional) If set, replaces the host and port in the value of environment variable
in the Krake complete hook URL (the name of this variable is given by env_url_). By default,
the value stored in the variable is the api_endpoint. Example: https://krake.external.
host:1234.

shutdown (string) This section defines the parameters needed for the Application shutdown hook. If is not
defined the Application shutdown hook is disabled.

2.2. Configuration 19

Krake, Release 1.0.0

hook_user (string) Name of the user that will be set as CN in the certificates generated for the hook.
If RBAC is enabled, should match a RoleBinding for the applications/shutdown subre-
source. Example system:shutdown-hook

intermediate_src (path) Path to the certificate which will be used to sign new generated certifi-
cates for the hook. Not needed if TLS is not enabled. Example: /etc/krake/certs/
system:shutdown-signing.pem

intermediate_key_src (path) Path to the key of the certificate which will be used to sign new generated
certificates for the hook. Not needed if TLS is not enabled. Example: /etc/krake/certs/
system:shutdown-signing-key.pem

cert_dest (path) Set the path to the certificate authority on the deployed Application. Example: /etc/
krake_cert

env_token (string) Name of the environment variable, which stores Krake authentication token. Exam-
ple: KRAKE_SHUTDOWN_TOKEN

env_url (string) Name of the environment variable, which stores Krake shutdown hook URL. Exam-
ple: KRAKE_SHUTDOWN_URL

external_endpoint (URL, optional) If set, replaces the host and port in the value of environment variable
in the Krake shutdown hook URL (the name of this variable is given by env_url_). By default,
the value stored in the variable is the api_endpoint. Example: https://krake.external.
host:1234.

Scheduler

Additional parameters, specific for the Scheduler:

reschedule_after (float): Number of seconds between the last update or rescheduling of a resource and the next
rescheduling. Example: 60

stickiness (float): Additional weight for the computation of the rank of the scheduler. It is added to the computation of
the rank of the cluster on which a scheduled resource is actually running. It prevents migration from happening
too frequently, and thus, represents the cost of migration. As the computation is done with normalized weights,
the stickiness is advised to be between 0 and 1. Example: 0.1.

Infrastructure controller

Additional parameters, specific for the Infrastructure controller:

poll_interval (float): Time in seconds for the Infrastructure Controller to ask the infrastructure provider client again
after a modification of a cluster. Example: 30.

2.2.4 Common configuration:

The following elements are common for all components of Krake except Rok.

Logging

log: This section is dedicated to the logging of the application. The syntax follows the one described for the Python
logging module (logging.config). The content of this section will be given to this module for configura-
tion.

20 Chapter 2. User Documentation

https://docs.python.org/2/library/logging.config.html

Krake, Release 1.0.0

2.2.5 Rok configuration

api_url (URL) Address of the Krake API to connect to. If the scheme given is incompatible with the tls.enabled
parameter, it will be overwritten to match. Example: http://localhost:8080

user (string) The name of the user that will access the resources. Example: john-doe

tls This section defines the parameters needed for TLS support, which can be used to communicate with the API.

enabled (boolean) Activate or deactivate the TLS support. If the API uses only TLS, then this should be set to
true. This has priority over the scheme given by api_url. Example: false

client_ca (path) Set the path to the client certificate authority. Example: ./tmp/pki/ca.pem

client_cert (path) Set the path to the client certificate. Example: ./tmp/pki/jc.pem

client_key (path) Set the path to the client key. Example: ./tmp/pki/jc-key.pem

2.3 Custom Observer Schema

2.3.1 Purpose

When a user creates Kubernetes resources on a Kubernetes cluster via Krake, those resources are managed by Krake
and should be “observed”. That’s the role of the Kubernetes Observer (see the dev/observers:Observers documen-
tation). But what parts of the Kubernetes resources should be “observed” by Krake? The purpose of the Observer
Schema is to provide a flexible mean for the Krake users to define which fields of the Kubernetes resources should be
“observed” and which shouldn’t.

When a field is “observed”, every change to the value of this field made outside of Krake is reverted to the last known
state of this field. When a field is not “observed”, Krake doesn’t act on external changes made to this field. This
is needed to keep a consistent and predictable application state, especially since changes could also be done in the
Kubernetes infrastructure or by the Kubernetes plane itself.

Note: The custom observer schema could be used even when the application is described by a TOSCA template or
CSAR archive. Both file types are translated to Kubernetes manifests in Krake’s Kubernetes application controller,
hence the custom observer schema file will be applied to the Kubernetes resources just like it happens during a “regu-
lar” workflow, when a Kubernetes manifest is used, see dev/tosca:TOSCA Workflow.

Note: As Kubernetes manages some fields of a Kubernetes resource (for instance the ResourceVersion), simply
observing the entirety of a Kubernetes resource is not possible. This would lead to infinite reconciliation loops between
Krake and Kubernetes, which is not a desirable state.

2.3.2 Format

Example

This basic example will be re-used at different part of this documentation.

Example of manifest file provided by the user:

2.3. Custom Observer Schema 21

Krake, Release 1.0.0

apiVersion: apps/v1
kind: Deployment
metadata:

name: echo-demo
namespace: secondary

spec:
selector:
matchLabels:

app: echo
template:
metadata:

labels:
app: echo

spec:
containers:
- name: echo

image: k8s.gcr.io/echoserver:1.10
ports:
- containerPort: 8080

apiVersion: v1
kind: Service
metadata:

name: echo-demo
namespace: secondary

spec:
type: NodePort
selector:
app: echo

ports:
- port: 8080
protocol: TCP
targetPort: 8080

Example of custom observer schema provided by the user.

apiVersion: v1
kind: Service
metadata:

name: echo-demo
namespace: default

spec:
selector:
app: null

ports:
- port: null
protocol: null
targetPort: null

- port: null
protocol: null
targetPort: null

- observer_schema_list_min_length: 1
observer_schema_list_max_length: 4

sessionAffinity: null

22 Chapter 2. User Documentation

Krake, Release 1.0.0

Default observer schema

By default, all fields defined in spec.manifest are observed. All other fields are not observed. By defining a
custom observer schema, the user is able to overwrite the default behavior and precisely define the observed fields.

In the example above, the user didn’t specify a custom observer schema file for the Deployment resource. Therefore
Krake will generate a default observer schema, and observe only the fields which are specified in the manifest file.

The result default observer schema for the Deployment resource is:

apiVersion: apps/v1
kind: Deployment
metadata:

name: echo-demo
namespace: secondary

spec:
selector:
matchLabels:

app: null
template:
metadata:

labels:
app: null

spec:
containers:
- name: null

image: null
ports:
- containerPort: null
- observer_schema_list_min_length: 1
observer_schema_list_max_length: 1

- observer_schema_list_min_length: 1
observer_schema_list_max_length: 1

Resource identification

In order to identify which resource a schema is referring to, the apiVersion, kind and name need to be specified.
Those fields are also the minimum fields a user can specify in order to observe a resource. As a result, and without
additional fields to observe, the Kubernetes Observer will simply check the presence of a Kubernetes resource with
this apiVersion, kind and name.

Example of a minimal observer schema for the Service resource:

apiVersion: v1
kind: Service
metadata:

name: echo-demo

Note: The Kubernetes namespace key metadata.namespace is not mandatory, as it is not used in the identifi-
cation of a resource in Krake. Indeed, its value is not always known at the creation of the application. It can depend
from the Kubernetes cluster the application is scheduled to.

Please note that not all Kubernetes objects are in a namespace. Most Kubernetes resources (e.g. pods, services,
replication controllers, and others) are in some namespaces. However, namespace resources are not themselves in a
namespace. And low-level resources, such as nodes and persistentVolumes, are not in any namespace.

2.3. Custom Observer Schema 23

Krake, Release 1.0.0

Therefore, Krake (by default) does not observe a Kubernetes namespace field.

Users may choose to add the metadata.namespace key to their custom observer schema, then the metadata.
namespace field will be observed.

Observed fields

A field value will be observed if it is defined in the observer schema. Its value should be null (in YAML), except for
fields used for the resource identification.

In the example above:

• the spec.type of the Service is not observed, as it is not present in the custom observer schema. Its original
value is specified in the manifest file, but Krake doesn’t guarantee this value to remain.

• the spec.selector.app of the Service is observed as it is present in the custom observer schema. Krake
guarantee that its original value will remain the same, by observing the value and reverting any changes which
were not made through Krake.

• the spec.sessionAffinity of the Service is observed. As it is not present in the manifest, the Kuber-
netes API will initialize it. Once it has been initialized by Kubernetes, Krake guarantee that its value will not be
modified outside of Krake.

Warning: A non-observed field cannot be updated by Krake. In order to update such a field, one also need to
observe it (i.e. update the custom observer schema to add this field).

Note: Except for the fields used for identifying the Kubernetes resource, all fields value MUST be null. Otherwise,
the custom observer schema is invalid.

List length control

A list’s length is controlled though the used of a special control dictionary, added as the last element of a list. The
minimum and maximum length of the list must be specified.

In the example Service’s custom observer schema, the number of ports must be between 1 and 4. If the length of
the ports list is below 1 or above 4, Krake reverts the Service to its last known value.

For the first port, the value of port, protocol, targetPort are defined in the manifest file.

The presence of a second element in the ports list in the custom observer schema doesn’t guarantee its presence.
Krake guarantee that, if a second port is set, its value won’t be allowed to change outside of Krake. It can be removed
and re-added, as long as its value remains unchanged.

Tip: Krake doesn’t allow to set a minimum list length value below the number of element specified in the manifest
file.

Tip: An unlimited list length can be specified by setting observer_schema_list_max_length to 0.

24 Chapter 2. User Documentation

Krake, Release 1.0.0

Note: A list MUST contain the special control dictionary. Otherwise, the custom observer schema is invalid.

2.3.3 Usage

A custom observer schema can be specified in rok with the argument -O or --observer_schema. If none is
provided, a default observer schema is generated and all fields defined in spec.manifest are observed

2.4 User Stories

2.4.1 Introduction

This guide

This guide aims at providing an introduction in some concepts and mechanisms of Krake. It provides guidances
and commands that readers are encouraged to try out by themselves on a demo environment as described in the next
section.

It does not aim at providing an exhaustive list of commands nor all the possible ways how to use them.

This guide is structured into independent Scenarios which usually start with a Preparation section, and end with a
Cleanup section.

Demo Environment

Note: The demo environment described in this section refers to a standard development environment deployed with
Ansible. See Set up Krake with Ansible

The demo environment is comprised of 3 virtual machines in the same private network:

• The Krake VM: It runs all the Krake components in docker containers, as well as a Prometheus Server to
simulate scheduling data for the backends.

• The two Minikube VMs minikube-cluster-1 and minikube-cluster-2: They run an all-in-one
Kubernetes “cluster”. They are used as backends by Krake to deploy the users’ applications.

Note: Scenario OpenStack backends additionally requires to have an OpenStack project at hand.

On the Krake VM, the two Kubernetes clusters kubeconfig files are present:

$ ll clusters/config/
$ cat clusters/config/minikube-cluster-1
$ cat clusters/config/minikube-cluster-2

Note: Unless stated otherwise (generally in the prompt), all commands are run on the Krake VM, with the krake
user.

A simple manifest file will be used as a demo application. It can be found at the following path:

2.4. User Stories 25

Krake, Release 1.0.0

$ cat git/krake/rak/functionals/echo-demo.yaml

2.4.2 Demonstration of basic commands and workflow

Goal: Get familiar with basic rok commands, and with the associated internal Krake mechanisms.

Introduction to the rok CLI

• Following commands provide basic help on the rok CLI and its structure:

$ rok --help
$ rok kubernetes --help # Similar to "rok kube --help"
$ rok kube application --help # Similar to "rok app --help"
$ rok kube cluster --help
$ rok infrastructure --help # Similar to "rok infra --help"

Register a cluster

• Register a Kubernetes cluster using its associated Kubernetes kubeconfig file.

$ rok kube cluster list # No Cluster resource is present
$ rok kube cluster register -k clusters/config/minikube-cluster-1
$ rok kube cluster list # One Cluster resource with name "minikube-cluster-1"

Note: The command register registers an existing Kubernetes cluster through its kubeconfig file. Resource
called a Cluster (handled by the kubernetes API of Krake) is created by the register command. It contains
multiple pieces of information, in particular the content of the kubeconfig file itself. The resource helps to store the
information needed to connect to the actual Kubernetes cluster.

Important: In the following, a Kubernetes cluster refers to an actual cluster, which has been already installed and
prepared. This can be the Minikube clusters deployed by the Krake test environment.

A Krake Kubernetes Cluster is a resource in the Krake database, which was created by Krake or registered into
Krake and contains the kubeconfig file of the corresponding Kubernetes cluster.

Tip: Krake is able to actually create a Kubernetes cluster by supported infrastructure providers. If you are interested
in the topic of Kubernetes cluster life-cycle management by Krake please refer to the Infrastructure providers section.

Spawn the demo application

• Spawn a Kubernetes Application using its Kubernetes manifest file.

$ rok kube app list # No Application resource is present
$ rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo
$ rok kube app list # One Application resource with name "echo-demo"

– Alternatively, spawn a Kubernetes Application using a TOSCA template file (or URL) or CSAR archive URL,
see Examples.

26 Chapter 2. User Documentation

Krake, Release 1.0.0

$ rok kube app list # No Application resource is present
$ rok kube app create -f git/krake/rak/functionals/echo-demo-tosca.yaml echo-demo
$ rok kube app list # One Application resource with name "echo-demo"

• Check application information:

– Application Status is RUNNING.

– Application is running on minikube-cluster-1.

$ rok kube app get echo-demo
$ rok kube app get echo-demo -o json # Use JSON format, which is also more verbose

• Access the demo application endpoint:

$ APP_URL=$(rok kube app get echo-demo -o json | jq '.status.services["echo-demo"]'); APP_URL="$APP_URL:1: -1" # Extract Application endpoint from JSON output and register it in the APP_URL variable
$ curl $APP_URL

• Check the created resources on the Kubernetes cluster:

$ kubectl --kubeconfig clusters/config/minikube-cluster-1 get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
echo-demo 1/1 1 1 3h34m
$ kubectl --kubeconfig clusters/config/minikube-cluster-1 get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
echo-demo NodePort 10.98.78.74 <none> 8080:32235/TCP 3h34m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 27h
$ kubectl --kubeconfig clusters/config/minikube-cluster-1 get po
NAME READY STATUS RESTARTS AGE
echo-demo-6dc5d84869-4hcd8 1/1 Running 0 3h34m

Update resources

• Update the manifest file to create a second Pod for the echo-demo application.

$ cat git/krake/rak/functionals/echo-demo-update.yaml

apiVersion: apps/v1
kind: Deployment
metadata:

name: echo-demo
spec:

replicas: 2
selector:
matchLabels:

app: echo
template:
metadata:

labels:
app: echo

spec:
containers:
- name: echo

image: k8s.gcr.io/echoserver:1.9
ports:
- containerPort: 8080

apiVersion: v1
kind: Service
metadata:

name: echo-demo

2.4. User Stories 27

Krake, Release 1.0.0

spec:
type: NodePort
selector:
app: echo

ports:
- port: 8080
protocol: TCP
targetPort: 8080

$ rok kube app update -f git/krake/rak/functionals/echo-demo-update.yaml echo-demo

– Alternatively, update a TOSCA template file (or URL) or CSAR archive URL to create a second Pod for the
echo-demo application, see Examples.

$ rok kube app update -f git/krake/rak/functionals/echo-demo-update-tosca.yaml echo-demo

• Check the existing resources on the Kubernetes cluster: A second Pod has been spawned.

$ kubectl --kubeconfig clusters/config/minikube-cluster-1 get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
echo-demo 2/2 2 2 42m
$ kubectl --kubeconfig clusters/config/minikube-cluster-1 get po
NAME READY STATUS RESTARTS AGE
echo-demo-6dc5d84869-2v6jh 1/1 Running 0 7s
echo-demo-6dc5d84869-l7fm2 1/1 Running 0 42m

Delete resources

• Issue the following commands to delete the echo-demo Kubernetes Application and the
minikube-cluster-1 Kubernetes Cluster.

$ rok kube app delete echo-demo
$ rok kube app list # No Application resource is present
$ rok kube cluster delete minikube-cluster-1
$ rok kube cluster list # No Cluster resource is present

2.4.3 Scheduling an Application using Labels and LabelConstraints

Goal: Explore the labels mechanisms and schedule an application based on labels and label constraints

Introduction to Scheduling mechanisms

Note: After its initial scheduling, an application location is re-evaluated every 60 seconds by the Scheduler - the
so-called “rescheduling”. In the following scenarios, we observe both the initial scheduling of an application, and
a migration triggered by the rescheduling. To correctly observe this mechanism, it is recommended to check the
Scheduler logs, the Application status, and the resources running on the Kubernetes clusters directly, by running the
following commands in separate terminals:

• Watch the echo-demo Kubernetes Application status, and more precisely its current location:

$ watch "rok kube app get echo-demo -o json | jq .status.running_on"

• Watch Scheduler logs:

$ docker logs -f krake_krake-ctrl-scheduler_1

• Observe k8s resources on both Minikube clusters:

28 Chapter 2. User Documentation

Krake, Release 1.0.0

$ watch kubectl --kubeconfig clusters/config/minikube-cluster-1 get all

$ watch kubectl --kubeconfig clusters/config/minikube-cluster-2 get all

Preparation

• Register the two clusters with a location Label.

Note: Each label always have a key and a value. We follow the same specifications as Kubernetes.

$ rok kube cluster register -k clusters/config/minikube-cluster-1 -l location=DE
$ rok kube cluster register -k clusters/config/minikube-cluster-2 -l location=SK

Spawn the demo application

• Create an application with a location LabelConstraints, and observe where it is deployed.

$ rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo -L location=DE
$ rok kube app get echo-demo -o json | jq .status.running_on

Observe a migration

• Update an application’s LabelConstraints and observe the migration to the second Kubernetes cluster.

$ rok kube app update echo-demo -L location=SK
$ rok kube app get echo-demo -o json | jq .status.running_on # The Application is now running on "minikube-cluster-2"

Cleanup

• Delete the echo-demo Kubernetes Application and both Krake Kubernetes Clusters

$ rok kube app delete echo-demo
$ rok kube cluster delete minikube-cluster-1
$ rok kube cluster delete minikube-cluster-2

2.4.4 Scheduling an Application Using Metrics

Goal: Explore the metrics mechanisms and schedule an application based on cluster metrics.

Note: Refer to the Introduction to Scheduling mechanisms for useful commands to observe the migration mechanism.

Introduction

Metrics in the Krake sense have two meanings. The first one is an actual value for some parameter, which can be
measured or computed in the real world. For instance the current space available on a data center, its latency, the
amount of green energy used by the data center could all be metrics. This value may be dynamic and change over
time. A GlobalMetric is also a resource in Krake. It represents an actual metric, is stored in the database, and
defines a few elements, such as the minimum and maximum values (Krake only considers numbers for the metrics).

2.4. User Stories 29

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

Krake, Release 1.0.0

The Krake scheduler can use these metrics to compute the score of a Krake Kubernetes Cluster. Each cluster is
associated with a list of metrics and their respective weights for this cluster. This list is defined by the user who added
the Cluster resource into Krake. A higher weight means that the metric has a higher influence in the score: a
metrics with a low value, but a high weight may have more impact on the score than a metric with medium value but
low weight. The Cluster metrics and the computed score is then used in the Application scheduling process.

For Krake to fetch the current value of a metric, a user needs to define where and how it can be requested.
GlobalMetricsProvider resources can be created for this purpose. They have different types, to support dif-
ferent technologies. There is for example a support for Prometheus. The GlobalMetricsProvider resource
will define the URL of the Prometheus instance and some other metadata, and afterwards, Krake’s scheduler can
automatically fetch the current value of the metrics for the score’s computation.

The static providers are simple metric providers usually only set during tests. They allow a Krake resource to be asso-
ciated with simple metrics, for which the value can be fetched easily, without having to set up a whole infrastructure.

The static providers thus give values for GlobalMetric resources. This value is only defined in the resource (stored
in the database). Updating the GlobalMetricsProvider resource definition thus implies updating the value of
the metrics.

An example of a static GlobalMetricsProvider resource is given in the following. It is used in the next steps
of this guide. As explained, the value of the metrics it provides are directly set inside its definition:

api: core
kind: GlobalMetricsProvider
metadata:

created: '2020-01-21T10:50:11.500376'
deleted: null
finalizers: []
labels: {}
modified: '2020-01-21T10:50:11.500376'
name: static_provider
namespace: null
owners: []
uid: 26ef45e8-e5c8-44fe-8a7f-a3f40944c925

spec:
static:
metrics:

electricity_cost_1: 0.9 # Set the value that will be provided for this metric
green_energy_ratio_1: 0.1 # Set the value that will be provided for this metric

type: static

To get additional information about the metrics and metrics providers, please read the documentation about them, see
Metrics and Metrics Providers.

Preparation

• Add the static_provider metrics provider using the bootstrap script (from the root of the Krake reposi-
tory):

$ cd <path_to_krake_root>
$ krake_bootstrap_db support/static_metrics.yaml

• Check that the GlobalMetricsProvider and GlobalMetrics objects have been successfully added:

$ rok core globalmetricsprovider get static_provider
+-----------+---------------------------+
name	static_provider
namespace	None
labels	None

30 Chapter 2. User Documentation

https://prometheus.io/

Krake, Release 1.0.0

created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
type	static
metrics	electricity_cost_1: 0.9
	green_energy_ratio_1: 0.1
+-----------+---------------------------+	
$ rok core globalmetric get electricity_cost_1	
+-----------+---------------------+	
name	electricity_cost_1
namespace	None
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
provider	static_provider
min	0
max	1
+-----------+---------------------+	
$ rok core globalmetric get green_energy_ratio_1	
+-----------+----------------------+	
name	green_energy_ratio_1
namespace	None
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
provider	static_provider
min	0
max	1
+-----------+----------------------+

• Register minikube-cluster-1 and minikube-cluster-2 clusters, and associate the
electricity_cost_1 and green_energy_ratio_1 metrics to them using different weights to
get different ranking scores:

$ rok kube cluster register -k clusters/config/minikube-cluster-1 --global-metric electricity_cost_1 10 --global-metric green_energy_ratio_1 1
$ rok kube cluster register -k clusters/config/minikube-cluster-2 --global-metric electricity_cost_1 1 --global-metric green_energy_ratio_1 10

• The clusters minikube-cluster-1/-2 have been defined with the following weights for the two static
metrics:

minikube-cluster-1 minikube-cluster-2 Value
electricity_cost_1 Weight: 10 Weight: 1 0.9
green_energy_ratio_1 Weight: 1 Weight: 10 0.1
Score 9.1 1.9

As the score of minikube-cluster-1 is higher, it will been chosen, and the Application will be deployed
on it. The score is computed like the following:

10 · 0.9 + 1 · 0.1 = 9.1

Scheduling of an application

• Create the echo-demo application and check it is actually deployed on the first cluster:

2.4. User Stories 31

Krake, Release 1.0.0

$ rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo
$ rok kube app get echo-demo # See "running_on": the Application is running on "minikube-cluster-1"

Note: You can observe the scheduler logs in DEBUG mode to gather additional understanding of the scheduling
mechanism.

Observe a migration

• The Scheduler regularly performs a check, to ensure the current cluster on which an Application is running is the
best, depending on its score. This check is done by default every minute (see the configuration of the Scheduler).
If an available cluster with a better score than the one of the current cluster is found, the Application is migrated
from the current to the better cluster.

As the score is computed using the metrics, we can trigger the migration by updating the exported value of the
metrics in the static_provider GlobalMetricsProvider resource. The following command updates
the value of the static metrics:

– electricity_cost_1: to have a value of 0.1;

– green_energy_ratio_1: to have a value of 0.9;

minikube-cluster-1 minikube-cluster-2 New value
electricity_cost_1 Weight: 10 Weight: 1 0.1
green_energy_ratio_1 Weight: 1 Weight: 10 0.9
Score 1.9 9.1

Note: This is not the actual score but a simplification, as stickiness is also part of the computation, see Scheduling of
Applications

• Update the value of the metrics, by updating the static_provider GlobalMetricsProvider:

$ rok core globalmetricsprovider update static_provider --metric electricity_cost_1 0.1 --metric green_energy_ratio_1 0.9
+-----------+---------------------------+
name	static_provider
namespace	None
labels	None
created	2021-04-08 08:04:23
modified	2021-04-08 08:10:34
deleted	None
type	static
metrics	electricity_cost_1: 0.1
	green_energy_ratio_1: 0.9
+-----------+---------------------------+

• Now, by waiting a bit (maximum 60 seconds if you kept the default configuration), the Scheduler should
have checked the new values of the metrics, and have requested a migration of the Application onto
minikube-cluster-2, which has now the better score:

$ rok kube app get echo-demo # See "running_on": the Application is running on "minikube-cluster-2"

Cleanup

• Delete the echo-demo Kubernetes Application and both Kubernetes Clusters.

32 Chapter 2. User Documentation

Krake, Release 1.0.0

$ rok kube app delete echo-demo
$ rok kube cluster delete minikube-cluster-1
$ rok kube cluster delete minikube-cluster-2

2.4.5 OpenStack backends

Warning: Due to stability and development issues on the side of Magnum, this feature isn’t actively developed
anymore.

Goal: Demonstrate the use of an OpenStack project as a backend for Krake

Note: Krake supports different kind of backends. In the previous example, we used a Kubernetes cluster (deployed
in a single VM via Minikube). In this scenario, we register an existing OpenStack project.

Register an existing OpenStack project to Krake

• Gather information about your OpenStack project, for example:

ubuntu@myworkstation:~$ openstack coe cluster template list # Get Template ID
ubuntu@myworkstation:~$ openstack project show my_openstack_project # Get Project ID
ubuntu@myworkstation:~$ openstack user show my_user # Get User ID
ubuntu@myworkstation:~$ grep OS_AUTH_URL ~/openrc # Get Keystone auth URL

• Create a OpenStack Project resource in Krake:

$ rok os project create --template 728f024e-8a88-4971-b79f-151da123f363 --project-id 5bc3bab620bd48b0b9b425ee492050ea --password "password" --user-id 737bbcd2ce264d2fa32fa306ac84e97d --auth-url https://identity.myopenstack.com:5000/v3 myproject

Create a MagnumCluster

$ rok os cluster list # No Cluster resource is present
$ rok os cluster create mycluster
$ rok os cluster list # One Cluster resource with name "mycluster"

Note: The creation of the Magnum cluster can take up to 10 minutes to complete.

• Observe that one Kubernetes Cluster is created in association to the MagnumCluster.

$ rok kube cluster list

Spawn the demo application

• Create the demo Kubernetes Application and observe the resource status.

$ rok kube app create -f git/krake/rak/functionals/echo-demo.yaml echo-demo
$ rok kube app get echo-demo # See "running_on"

2.4. User Stories 33

Krake, Release 1.0.0

Cleanup

• Delete the echo-demo Kubernetes Application and the OpenStack Project

$ rok kube app delete echo-demo
$ rok kube os cluster delete mycluster
$ rok kube project delete myproject

2.4.6 Creation and deployment of a stateful application

Goal: Create and deploy a stateful application to Krake.

Note: This feature is still under development in Krake, so new features could be added or removed in the
future. Also, some implementation details might change.

Therefore, this page is subject to changes until this note is removed.

2.4.7 Infrastructure providers

Goal: Demonstrate the use of an OpenStack based cloud backend for Krake. Krake uses the IM (Infrastructure Man-
ager) provider as a backend for spawning a Kubernetes cluster. A Kubernetes cluster is then automatically registered
in Krake and could be used for the application deployment.

This is an advanced user scenario where the user should register the existing infrastructure provider backend (IM) as
well as an existing IaaS cloud deployment (OpenStack) before the actual cluster creation. The user is navigated to
register those resources to Krake. Please read the brief overview of Krake’s infrastructure provider and cloud resources
below:

Krake resources called GlobalInfrastructureProvider and InfrastructureProvider correspond to an infrastructure
provider backend, that is able to deploy infrastructures (e.g. Virtual machines, Kubernetes clusters, etc.) on IaaS cloud
deployments (e.g. OpenStack, AWS, etc.). Krake currently supports IM (Infrastructure Manager) as an infrastructure
provider backend.

Krake resources called GlobalCloud and Cloud correspond to an IaaS cloud deployment (e.g. OpenStack, AWS, etc.)
that will be managed by the infrastructure provider backend. GlobalCloud and Cloud resources could contain also
metrics and labels, that could be used in Cluster scheduling. Krake currently supports OpenStack as a GlobalCloud or
Cloud backend.

Note: The global resource (e.g. GlobalInfrastructureProvider, GlobalCloud) is a non-namespaced resource that could
be used by any (even namespaced) Krake resource. For example, the GlobalCloud resource could be used by any
Cluster which needs to be scheduled to some cloud.

Note: Note that file paths mentioned in this tutorial are relative to the root of the Krake repository.

Preparation

Launch the IM infrastructure provider instance using the support script. Please note that the IM instance is launched
in the docker environment, therefore it is mandatory to install docker beforehand.

support/im

34 Chapter 2. User Documentation

https://github.com/grycap/im
https://github.com/grycap/im
https://www.openstack.org/
https://github.com/grycap/im
https://github.com/grycap/im
https://docs.docker.com/get-docker/

Krake, Release 1.0.0

Warning: The above support script launches the IM as is described in the IM quick start tutorial, hence with the
default configuration and in a non-productive way. Please visit the IM documentation for further information about
how to configure, launch and interact with the IM software.

Register an existing infrastructure provider to Krake

IM service username and password could be arbitrary. The username and password are used for userspace
definition. It means, that anyone can talk with IM but can see only their own userspace.

rok infra provider register --type im --url http://localhost:8800 --username test --password test im-provider

Register an existing OpenStack based cloud to Krake

Gather information about your OpenStack project from openrc file:

• Insert the OS_AUTH_URL value (without path) to the --url argument, e.g. https://identity.cloud.com:5000

• Insert the OS_PROJECT_NAME value to the --project argument

• Insert the OS_USERNAME value to the --username argument

• Insert the OS_PASSWORD value to the --password argument

Use the already registered infrastructure provider called im-provider as an infrastructure provider for your Open-
Stack cloud.

Note: If you want to use the C&H F1A OpenStack cloud, please note that it does not assign public IPs to the VMs.
C&H F1A requires a private network for all VMs. This private network is connected to the public one via a router.
The router should be created beforehand as the IM provider is not able to do this. You can create the requested router
in your C&H F1A OpenStack cloud project as follows:

openstack router create --external-gateway shared-public-IPv4 public_router

rok infra cloud register --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud

Create a Cluster

rok kube cluster list # No Cluster resource is present
rok kube cluster create -f rak/functionals/im-cluster.yaml my-cluster
rok kube cluster list # One Cluster resource with name "my-cluster"

The creation of the cluster can take up to 15 minutes to complete. Observe that Kubernetes Cluster is created.

rok kube cluster list

Spawn the demo application

Create the demo Kubernetes Application and observe the resource status.

rok kube app create -f rak/functionals/echo-demo.yaml echo-demo
rok kube app get echo-demo # See "running_on"

2.4. User Stories 35

https://github.com/grycap/im
https://imdocs.readthedocs.io/en/latest/gstarted.html
https://imdocs.readthedocs.io/en/latest/
https://github.com/grycap/im
https://github.com/grycap/im
https://github.com/grycap/im

Krake, Release 1.0.0

Cleanup

Delete the Cluster, the Cloud and the InfrastructureProvider:

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud
rok infra provider delete im-provider

2.4.8 Scheduling a Cluster using Labels and LabelConstraints

Goal: Explore the labels mechanisms and schedule a Cluster based on labels and label constraints.

Introduction

Note: Refer to the Label constraints for useful information about label constraints.

Krake allows the user to define a label constraint and restrict the deployment of Cluster resources only to cloud
backends that match all defined labels.

Preparation

Please go through the Preparation as well as through the Register an existing infrastructure provider to Krake and
register an infrastructure provider. Validate the infrastructure provider registration as follows:

$ rok infra provider list
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+
| name | namespace | labels | created | modified | deleted | type | url |
+=============+==============+========+=====================+=====================+=========+======+=======================+
| im-provider | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | im | http://localhost:8800 |
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+

Register os-cloud-1 and os-cloud-2 Clouds, and associate the location Label. Each label always has a key and
a value. We follow the same specifications as the Kubernetes project.

Note: Refer to the Register an existing OpenStack based cloud to Krake for useful information about Cloud attributes.

rok infra cloud register -l location=DE --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-1
rok infra cloud register -l location=SK --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-2

Tip: You do not need access to the two OpenStack projects for os-cloud-1 and os-cloud-2 registration. It
is possible to register one OpenStack project two times in Krake with different labels. Do not use this setup in the
production environment!

Scheduling of a Cluster

Create my-cluster cluster with a location LabelConstraints, and observe where it is spawned.

rok kube cluster create -f git/krake/rak/functionals/im-cluster.yaml my-cluster -L location=SK
rok kube cluster get my-cluster -o json | jq .status.running_on # Cluster is running on "os-cloud-2"

36 Chapter 2. User Documentation

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#syntax-and-character-set

Krake, Release 1.0.0

Note: You can observe the scheduler logs in DEBUG mode to gather additional understanding of the scheduling
mechanism.

Cleanup

Delete the Cluster, both Clouds and the IM InfrastructureProvider.

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud-1
rok infra cloud delete os-cloud-2
rok infra provider delete im-provider

2.4.9 Scheduling a Cluster using Metrics

Goal: Schedule the cluster based on cloud metrics.

Introduction

Note: Refer to the Introduction and Metrics and Metrics Providers for useful information about metrics.

The Krake scheduler can use metrics to compute the score of a Krake Cloud resource. Each Cloud is associated with a
list of metrics and their respective weights for this Cloud. This list is defined by the user who added the Cloud resource
into Krake. A higher weight means that the metric has a higher influence in the score: a metric with a low value, but a
high weight may has more impact on the score than a metric with a medium value but low weight. The Cloud metrics
and the computed score are then used in the Cluster scheduling process.

Note: Note that file paths mentioned in this tutorial are relative to the root of the Krake repository.

Preparation

Add the static_provider metrics provider using the bootstrap script (from the root of the Krake repository):

cd <path_to_krake_root>
krake_bootstrap_db support/static_metrics.yaml

Check that the GlobalMetricsProvider and GlobalMetrics objects have been successfully added:

$ rok core globalmetricsprovider list
+-----------------+-----------+--------+---------------------+---------------------+---------+---------+
| name | namespace | labels | created | modified | deleted | mp_type |
+=================+===========+========+=====================+=====================+=========+=========+
| static_provider | None | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | static |
+-----------------+-----------+--------+---------------------+---------------------+---------+---------+

$ rok core globalmetric list
+----------------------+-----------+--------+---------------------+---------------------+---------+-----------------+-----+-----+
| name | namespace | labels | created | modified | deleted | provider | min | max |
+======================+===========+========+=====================+=====================+=========+=================+=====+=====+
| electricity_cost_1 | None | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | static_provider | 0 | 1 |

2.4. User Stories 37

Krake, Release 1.0.0

| green_energy_ratio_1 | None | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | static_provider | 0 | 1 |
+----------------------+-----------+--------+---------------------+---------------------+---------+-----------------+-----+-----+

Please go through the Preparation as well as through the Register an existing infrastructure provider to Krake and
register an infrastructure provider. Validate the infrastructure provider registration as follows:

$ rok infra provider list
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+
| name | namespace | labels | created | modified | deleted | type | url |
+=============+==============+========+=====================+=====================+=========+======+=======================+
| im-provider | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | im | http://localhost:8800 |
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+

Register os-cloud-1 and os-cloud-2 Clouds, and associate the electricity_cost_1 and
green_energy_ratio_1 metrics to them using different weights to get different ranking scores:

Note: Refer to the Register an existing OpenStack based cloud to Krake for useful information about Cloud attributes.

rok infra cloud register --global-metric electricity_cost_1 1 --global-metric green_energy_ratio_1 10 --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-1
rok infra cloud register --global-metric electricity_cost_1 10 --global-metric green_energy_ratio_1 1 --type openstack --url <os-auth-url> --project <os-project-name> --username <os-username> --password <os-password> --infra-provider im-provider os-cloud-2

Tip: You do not need access to the two OpenStack projects for os-cloud-1 and os-cloud-2 registration. It
is possible to register one OpenStack project two times in Krake with different metrics. Do not use this setup in the
production environment!

The clouds os-cloud-1/-2 have been defined with the following weights for the two static metrics:

os-cloud-1 os-cloud-2 Value
electricity_cost_1 Weight: 1 Weight: 10 0.9
green_energy_ratio_1 Weight: 10 Weight: 1 0.1
Score 1.9 9.1

As the score of os-cloud-2 is higher, it will been chosen, and the Cluster will be spawned on it. The
score is computed like the following:

10 · 0.9 + 1 · 0.1 = 9.1

Scheduling of a Cluster

Create the my-cluster cluster and check it is actually spawned on the second cloud:

rok kube cluster create -f rak/functionals/im-cluster.yaml my-cluster
rok kube cluster get my-cluster -o json | jq .status.running_on # Cluster is running on "os-cloud-2"

Note: You can observe the scheduler logs in DEBUG mode to gather additional understanding of the scheduling
mechanism.

Cleanup

Delete the Cluster, both Clouds and the InfrastructureProvider.

38 Chapter 2. User Documentation

Krake, Release 1.0.0

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud-1
rok infra cloud delete os-cloud-2
rok infra provider delete im-provider

2.4.10 Horizontal Cluster Scaling

Goal: Scale up and then down (horizontally) the actual Kubernetes cluster using Krake.

This is an advanced user scenario where the user should register an existing infrastructure provider backend (IM) as
well as an existing IaaS cloud deployment (OpenStack) before the actual cluster creation and scaling it horizontally.
Horizontal scaling is the act of adding (or removing) nodes of the same size to the cluster.

Note: Keep in mind that Krake is able to actually create and then scale (update) the Kubernetes cluster by supported
infrastructure providers. Please refer to the Infrastructure Controller and visit related user stories for more information
about how the actual Kubernetes cluster could be managed by Krake.

Note: Note that file paths mentioned in this tutorial are relative to the root of the Krake repository.

Preparation

Please go through the Preparation as well as through the Register an existing infrastructure provider to Krake and
register an infrastructure provider. Validate the infrastructure provider registration as follows:

$ rok infra provider list
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+
| name | namespace | labels | created | modified | deleted | type | url |
+=============+==============+========+=====================+=====================+=========+======+=======================+
| im-provider | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | im | http://localhost:8800 |
+-------------+--------------+--------+---------------------+---------------------+---------+------+-----------------------+

Please go through the Register an existing OpenStack based cloud to Krake and register an existing OpenStack cloud
to Krake. Validate the cloud registration as follows:

$ rok infra cloud list
+----------+--------------+--------+---------------------+---------------------+---------+-----------+---------+----------------+--------+
| name | namespace | labels | created | modified | deleted | type | metrics | infra_provider | state |
+==========+==============+========+=====================+=====================+=========+===========+=========+================+========+
| os-cloud | system:admin | None | 2000-01-01 08:00:00 | 2000-01-01 08:00:00 | None | openstack | [] | im-provider | ONLINE |
+----------+--------------+--------+---------------------+---------------------+---------+-----------+---------+----------------+--------+

Create the Cluster

Create the my-cluster cluster using the example TOSCA template stored in rak/functionals/im-cluster.yaml. This
TOSCA template should create a Kubernetes cluster with one control plane node and one worker node.

rok kube cluster create -f rak/functionals/im-cluster.yaml my-cluster

The creation of the cluster can take up to 15 minutes to complete. The fully created and configured cluster should be
in the ONLINE state. You should also see that 2 from 2 nodes total are healthy (nodes: 2/2). Validate them as follows:

2.4. User Stories 39

Krake, Release 1.0.0

$ rok kube cluster get my-cluster
+-----------------------+---+
name	my-cluster
namespace	system:admin
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
state	ONLINE
reason	None
custom_resources	[]
metrics	[]
failing_metrics	None
label constraints	[]
metric constraints	[]
scheduled_to	'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'
scheduled	2000-01-01 08:00:00
running_on	'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'
nodes	2/2
nodes_pid_pressure	0/2
nodes_memory_pressure	0/2
nodes_disk_pressure	0/2
+-----------------------+---+

Optionally, you can export the my-cluster kubeconfig file and validate the cluster health and nodes count directly
by the kubectl CLI. You can do this as follows (with the help of jq command-line JSON processor):

rok kube cluster get my-cluster -o json | jq .spec.kubeconfig > kubeconfig.json

Access the my-cluster cluster:

$ kubectl --kubeconfig=kubeconfig.json get nodes
NAME STATUS ROLES AGE VERSION
kubeserver.localdomain Ready control-plane,master 10m v1.22.9
vnode-1.localdomain Ready <none> 9m46s v1.22.9

Scale up the Cluster

Scale the created cluster up using the example TOSCA template stored in rak/functionals/im-cluster-scale-up.yaml.
This TOSCA template should add one worker node. Its size (flavor) should be the same as the size of the previously
created worker node.

Alternatively, you can adjust the worker node number on your own. In this case, find and adjust the
wn_num variable count in the TOSCA template:

wn_num:
type: integer
description: Number of WNs in the cluster
default: 2
required: yes

Scale up the cluster:

rok kube cluster update -f rak/functionals/im-cluster-scale-up.yaml my-cluster

The scaling of the cluster can take up to 5 minutes to complete. The fully scaled and configured cluster should be in
the ONLINE state. You should also see that one node has been successfully added i.e. 3 from 3 nodes total are healthy
(nodes: 3/3). Validate them as follows:

40 Chapter 2. User Documentation

https://kubernetes.io/docs/tasks/tools/#kubectl
https://stedolan.github.io/jq/

Krake, Release 1.0.0

$ rok kube cluster get my-cluster
+-----------------------+---+
name	my-cluster
namespace	system:admin
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
state	ONLINE
reason	None
custom_resources	[]
metrics	[]
failing_metrics	None
label constraints	[]
metric constraints	[]
scheduled_to	'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'
scheduled	2000-01-01 08:00:00
running_on	'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'
nodes	3/3
nodes_pid_pressure	0/3
nodes_memory_pressure	0/3
nodes_disk_pressure	0/3
+-----------------------+---+

Access the my-cluster cluster again and validate the cluster health and nodes count directly by the kubectl CLI:

$ kubectl --kubeconfig=kubeconfig.json get nodes
NAME STATUS ROLES AGE VERSION
kubeserver.localdomain Ready control-plane,master 34m v1.22.9
vnode-1.localdomain Ready <none> 32m v1.22.9
vnode-2.localdomain NotReady <none> 9m8s v1.22.9

Scale down the Cluster

Scale the created cluster down using the example TOSCA template stored in rak/functionals/im-cluster-scale-
down.yaml. This TOSCA template should remove one worker node.

Alternatively, you can adjust the worker node number on your own. In this case, find and adjust the
wn_num and removal_list variables in the TOSCA template:

wn_num:
type: integer
description: Number of WNs in the cluster
default: 1
required: yes

...

wn:
type: tosca.nodes.indigo.Compute
capabilities:

scalable:
properties:
count: { get_input: wn_num }
removal_list: ['2']

The removal_list variable should be defined and should contain the ID(s) of the VM(s) which should
be removed from the cluster. You can find the VM IDs in the cluster.status.nodes section of the
Krake cluster resource as follows (with the help of jq command-line JSON processor):

2.4. User Stories 41

https://kubernetes.io/docs/tasks/tools/#kubectl
https://stedolan.github.io/jq/

Krake, Release 1.0.0

$ rok kube cluster get my-cluster -o json | jq .status.nodes[].metadata.name
"kubeserver.localdomain"
"vnode-1.localdomain"
"vnode-2.localdomain"

Find the more detailed description about removal_list in the IM documentation.

Scale down the cluster:

rok kube cluster update -f rak/functionals/im-cluster-scale-down.yaml my-cluster

The scaling of the cluster can take up to 5 minutes to complete. The fully scaled and configured cluster should be
in the ONLINE state. You should also see that one node has been successfully removed i.e. 2 from 2 nodes total are
healthy (nodes: 2/2). Validate them as follows:

$ rok kube cluster get my-cluster
+-----------------------+---+
name	my-cluster
namespace	system:admin
labels	None
created	2000-01-01 08:00:00
modified	2000-01-01 08:00:00
deleted	None
state	ONLINE
reason	None
custom_resources	[]
metrics	[]
failing_metrics	None
label constraints	[]
metric constraints	[]
scheduled_to	'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'
scheduled	2000-01-01 08:00:00
running_on	'namespace': 'system:admin', 'kind': 'Cloud', 'name': 'os-cloud', 'api': 'infrastructure'
nodes	2/2
nodes_pid_pressure	0/2
nodes_memory_pressure	0/2
nodes_disk_pressure	0/2
+-----------------------+---+

Access the my-cluster cluster again and validate the cluster health and nodes count directly by the kubectl CLI:

$ kubectl --kubeconfig=kubeconfig.json get nodes
NAME STATUS ROLES AGE VERSION
kubeserver.localdomain Ready control-plane,master 40m v1.22.9
vnode-1.localdomain Ready <none> 38m v1.22.9

Cleanup

Delete the Cluster, Cloud and the InfrastructureProvider.

rok kube cluster delete my-cluster
rok infra cloud delete os-cloud
rok infra provider delete im-provider

2.5 HTTP Problem documentation

The failure reason of the Krake API HTTP layer is stored as an RFC7807 Problem. It is a way to define uniform,
machine-readable details of errors in an HTTP response.

42 Chapter 2. User Documentation

https://imdocs.readthedocs.io/en/latest/REST.html?highlight=removal_list#im-rest-api
https://kubernetes.io/docs/tasks/tools/#kubectl
https://tools.ietf.org/html/rfc7807

Krake, Release 1.0.0

In case of a failure on the Krake API HTTP layer, the Krake API responds with a well-formatted RFC7807 Problem
message, which could contain the following fields:

type A URI reference that identifies the problem type. It should point the Krake API users to the concrete part of
the Krake documentation where the problem type is explained in detail. Defaults to about:blank.

title A short, human-readable summary of the problem type

status The HTTP status code

detail A human-readable explanation of the problem

instance A URI reference that identifies the specific occurrence of the problem

When RFC7807 Problem type is defined, it points Krake API clients to the below list of better-described HTTP
problems.

Note: The RFC7807 Problem type URI is generated based on --docs-problem-base-url API configura-
tion parameter (see Krake configuration) and the value from the list of defined HTTP Problems, see krake.api.
helpers.HttpProblemTitle.

2.5.1 not-found-error

A requested resource cannot be found in the database.

2.5.2 transaction-error

A database transaction failed.

2.5.3 update-error

A update of resource field.

2.5.4 invalid-keystone-token

An authentication attempt with a keystone token failed.

2.5.5 invalid-keycloak-token

An authentication attempt with a keycloak token failed.

2.5.6 resource-already-exists

A resource already defined in the database is requested to be created.

2.5. HTTP Problem documentation 43

https://tools.ietf.org/html/rfc7807
about:blank
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807

Krake, Release 1.0.0

44 Chapter 2. User Documentation

CHAPTER 3

Administrator Documentation

This chapter presents the installation of Krake using Ansible.

3.1 Set up Krake with Ansible

This sections describes prerequisites and deployment of a Krake infrastructure with Ansible.

3.1.1 Prerequisites

• Ansible 2.9.x or superior using a Python 3 interpreter

• The full Openstack client python module

• Docker Python module

It is suggested that Ansible is installed inside the virtualenv of Krake.

pip install --editable "krake/[ansible]"

Check the version and Python executable of the Ansible installation:

ansible --version

ansible 2.9.2
config file = None
configured module search path = ['/path/to/home/.ansible/plugins/modules', '/usr/

→˓share/ansible/plugins/modules']
ansible python module location = /path/to/virtualenv/lib/python3.6/site-packages/

→˓ansible
executable location = /path/to/virtualenv/bin/ansible
python version = 3.6.8 (default, Oct 7 2019, 12:59:55) [GCC 8.3.0]

Before any infrastructure can be deployed, the necessary Ansible collections need to be installed first:

45

https://www.ansible.com/
https://docs.ansible.com/ansible/latest/roadmap/ROADMAP_2_9.html
https://pypi.org/project/openstackclient/
https://pypi.org/project/docker/

Krake, Release 1.0.0

ansible-galaxy install -r ansible/requirements.yml

3.1.2 Krake infrastructure deployment

The Krake infrastructure is provisioned by a set of Ansible playbooks. The infrastructure is split into multiple separate
OpenStack Heat stacks. Every Heat stack is provisioned by its own Ansible playbook. The complete infrastructure
can be created by the top-level site.yml playbook.

Krake YAML inventory file hosts.yml needs to be created. Use the example file and adjust it. The only parameter that
needs to be modified is the keypair variable. It should name an existing OpenStack keypair. If the corresponding key
file is not ~/.ssh/id_rsa specify it in the key_file parameter.

It is assumed that environmental variables for authentication against OpenStack project exist. They can be set by
sourcing the OpenStack RC file.

cd ansible/
cp hosts.yml.example hosts.yml
Get list of all existing OpenStack keypairs
openstack keypair list

The complete infrastructure can be created by the top-level site.yml playbook.

ansible-playbook -i hosts.yml site.yml

Each infrastructure component can by created separately by corresponding ansible playbook e.g. the Krake application
infrastructure can be created by Krake playbook.

ansible-playbook -i hosts.yml krake.yml

Table of available playbooks:

Krake Infrastructure component Playbook name
Top-level playbook site.yml
Krake application krake.yml
Central IdP instance central_idp.yml
Devstack instance devstack.yml
Gateway SSH jump host gateway.yml
Network “virtual” host network.yml
Prometheus server instance prometheus.yml
Minikube cluster minikube_cluster.yml
Magnum cluster magnum_cluster.yml

3.1.3 Krake Ansible directory structure

Ansible related-files are stored in the ansible/ directory of the repository. Each sub-directory groups files based on
Ansible best practices recommendations.

46 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

Sub-directory / File Description
ansible.cfg Local Ansible configuration
hosts.yml Krake YAML inventory file
plugins/ Custom Ansible plugins
files/ Heat stack templates and files
plugins/ Custom Ansible plugins
group_vars/ Ansible group variables used as default values
roles/ Files for reusable Ansible roles
utils/ Krake Ansible helper scripts

3.1.4 Access through the gateway

To compartmentalize the infrastructure, all machines deployed by Krake are present on the same OpenStack private
network. Only the gateway is associated with a floating IP and can thus be accessed externally. All other machines
can be reached through the gateway.

To simplify this process, the wireguard VPN is installed on the gateway when deployed. After the deployment, for
each wireguard peer set for the gateway in the host file (see Inventory structure), a wireguard configuration file is
created in the etc directory where the inventory files are created (ansible/.etc by default). The files names have
the following syntax: wg_<peer_name>.conf.

To use this file you have to:

0. install wireguard locally. If you are using Ubuntu, you can use the following command:

$ sudo apt install wireguard

1. generate a wireguard key:

$ umask 077
$ wg genkey > privatekey
$ wg pubkey < privatekey > publickey

2.1 open the wg_<peer_name>.conf and change the REPLACEME placeholder with
the private key that corresponds to the peer.

2.2 Use SSH to connect to the krake-gateway-server. Check the gateway
server and if necessary adjust to accommodate the correct wireguard keys. Replace the
REPLACEME placeholder with the public key. You can find the public key in the directory
under /etc/wireguard :

[Interface]
PrivateKey = <INSERT_PRIVATE_WIREGUARD_KEY>
Address = 10.9.0.1

[Peer]
PublicKey = <INSERT_PUBLIC_KEY_FROM_GATEWAY_SERVER>

Endpoint = 185.128.119.165:51820
AllowedIPs = 10.9.0.0/24, 192.168.0.0/24

3. bring the wireguard interface up by using:

$ wg-quick up <path_to_file>/wg_<peer_name>.conf

(continues on next page)

3.1. Set up Krake with Ansible 47

https://www.wireguard.com/

Krake, Release 1.0.0

(continued from previous page)

Example:
$ wg-quick up ansible/.etc/wg_my-peer.conf

4. you can now SSH into the other machines on the private network:

$ ssh ubuntu@<krake_VM_private_ip>

The wireguard interface can be brought down by using:

$ wg-quick down <path_to_file>/wg_<peer_name>.conf

Example:
$ wg-quick down ansible/.etc/wg_my-peer.conf

Important: If several Krake deployments are managed from a single machine, the peer names should have a different
value, to avoid conflicts with the wireguard network interfaces.

If several network interfaces are up at the same time, then the Krake private networks should not overlap. So if
one has for instance the CIDR 192.168.0.0/24, another deployment should use something independent, such as
192.168.1.0/24.

3.2 Variables

This sections describes Krake Ansible variables definition. Variables are stored in the group_vars/ directory or directly
in the inventory file hosts.yml. Inventory file defines variables on global level or on a host group level (see Inventory).

3.2.1 Variables definition

Krake Ansible variables stored in group_vars/ directory are structured into files where the filename matches the
inventory host group name. Global variables common for all inventory host groups are defined in all.yml variable file.
Following section describes files and variables used by Krake Ansible playbooks.

all.yml

etc_dir The directory of JSON files which store inferred information from hosts by krake_inventory plugin

central_idps.yml

keystone_port Central IdP keystone port

secgroup_name Security group name

flavor Flavor manages the sizing for the compute, memory and storage capacity of the host

floating_ip Enables the use of public IP address

git_branch Git branch name

devstack.yml

prometheus_port Prometheus server port

service_provider_port Prometheus clients port

template_name Name of the default kubernetes cluster template

48 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

cluster_keypair Name of the default keypair that is used to spawn kubernetes clusters via Magnum

idp_name Central IdP name

federated_domain_name Federated domain name

federation_protocol_name Federation protocol name

idp_mapping_name Central IdP mapping name

flavor Flavor manages the sizing for the compute, memory and storage capacity of the host

floating_ip Enables the use of public IP address

git_branch Git branch name

gateways.yml

flavor Flavor manage the sizing for the compute, memory and storage capacity of the host

wireguard_port: Port on which the wireguard service will listen to on the gateway.

krake_apps.yml

flavor Flavor manages the sizing for the compute, memory and storage capacity of the host

floating_ip Enables the use of public IP address

api_host OpenStack Heat template API name

api_port OpenStack Heat template API port

etcd_host (string) Name of the etcd container started using docker-compose.

etcd_port (int) Port of the etcd cluster in the etcd container started using docker-compose.

etcd_peer_port (int) Peer listening port of the etcd cluster in the etcd container started using docker-compose.

api_host (string) Name of the Krake API container started using docker-compose.

api_port (int) Port that can be used to reach the Krake API present in the container started using docker-
compose.

enable_tls (boolean) Enable or disable TLS support for communications with the API (for the API, controllers
and Rok utility). The certificates need to be added manually into the /etc/krake directory in the Krake
VM.

worker_count (integer) On each Controller, amount of working units that will handle resources received con-
currently.

debounce (float) On each Controller, timeout (in seconds) for the worker queue before handing over a resource,
to wait for an updated state.

complete_hook_user (string) Name of the user for the “complete” hook.

complete_hook_cert_dest (file path) Path inside the deployed Application where the certificate and its key
will be stored (for the “complete” hook).

complete_hook_env_token (string) Name of the environment variable that will contain the token in the de-
ployed Application.

complete_hook_env_url (string) Name of the environment variable that will contain the URL of the Krake
API in the deployed Application.

external_endpoint (URL, optional) URL of the Krake API that will be reachable for any deployed Applica-
tion.

3.2. Variables 49

Krake, Release 1.0.0

use_private_ip (boolean) If set to True, and no external endpoint has been set, the URL for the external end-
point (see above) will be computed automatically, using the Krake API private IP, its port and the “http”
or “https” scheme depending on the status of TLS on the Krake API (enabled or disabled).

shutdown_hook_user (string) Name of the user for the “shutdown” hook.

shutdown_hook_cert_dest (file path) Path inside the deployed Application where the certificate and its key
will be stored (for the “shutdown” hook).

shutdown_hook_env_token (string) Name of the environment variable that will contain the token in the de-
ployed Application.

shutdown_hook_env_url (string) Name of the environment variable that will contain the URL of the Krake
API in the deployed Application.

magnum_clusters.yml

prometheus_port Prometheus server port

magnum_path Magnum path

kube_api_config Path of kubernetes configuration file

user_role Federated user role

user_project Federated project name

minikube_clusters.yml

api_port OpenStack Heat template api port

minikube_install_dir Minikube installation directory path

minikube_version Minikube version

kubectl_version Kubectl version

kube_api_config Kubectl api configuration file path

minikube_path Minikube keystone path

user_role Federated user role

user_project Federated project name

flavor Flavor manages the sizing for the compute, memory and storage capacity of the host

floating_ip Enables the use of public IP address

prometheus.yml

prometheus_admin_pass Prometheus server admin password

grafana_admin_pass Grafana server admin password

ports Prometheus server VM open ports

flavor Flavor manages the sizing for the compute, memory and storage capacity of the host

floating_ip Enables the use of public IP address

git_branch Git branch name

50 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

3.3 Inventory

This sections describes the Ansible inventory of the Krake project. Ansible works against multiple infrastructure hosts.
Hosts are configured in an inventory file hosts.yml which is a standard Ansible YAML inventory that uses multiple
groups structure and a custom krake_inventory plugin (see auto plugin).

3.3.1 Inventory plugin

The krake_inventory custom plugin loads the JSON file defined by variable hosts_file and augments the host variables
with dynamic variables (e.g. public and private IP addresses) depending on host. The location of JSON file which
stores inferred information can be configured by specifying the hosts_file variable in the all group . If it is not specified
it defaults to .etc/<inventory-filestem>.json.

3.3.2 Inventory structure

Krake inventory file hosts.yml uses Ansible multiple groups structure of inventory.

Global variables for all hosts are defined under the vars sub-section. This sub-section defines following:

keypair OpenStack SSH key pair name of public ssh key which will be used for accessing the infrastructure to deploy
hosts. Different keys could be defined directly for specific group or host.

key_file SSH private key file path on local computer for corresponding keypair. If key_file is set to null, the default
SSH identity (~/.ssh/id_rsa) will be used.

gateway SSH jump host that is used to access the OpenStack instances. By default, no OpenStack server has a floating
IP assigned except hosts in the gateways group. All other hosts use the gateway host variable to define a SSH
jump host. Wireguard is also installed on the gateway, see Access through the gateway

authorized_keys - optional List of additional authorized SSH keys, which can be used for accessing the hosts.

Each Krake infrastructure host is defined by corresponding host group sub-section in Krake inventory file. The default
parameters for every host group are defined in the group_vars/ directory where the filename matches the group name.
Krake inventory file defines following host groups and host variables:

gateways SSH jump host that is used to access the OpenStack instances.

network Inventory name of the network on which this SSH jump host should be deployed

vpn_cidr VPN Classless Inter-Domain Routing definition (e.g. 10.9.0.0/24). This will define the
wireguard network. Each peer on this network (the gateway and users or administrators of the
deployment) will have a specific address on this network.

wireguard_peers List of all wireguard peer for whom access should be granted on the gateway.
Several peers can be added. A wireguard configuration file will be created for each peer.

name The name of the peer. This string is used to differentiate the different peers from each
other. It will also be given to the wireguard network interface. The value can be arbitrary,
but should be unique per deployment, or over deployment if you plan on managing several
ones with the same machine.

public_key The wireguard public key of the peer.

IP Set the IP that will be given to the current peer in the wireguard network. Each peer should
be given a different IP to prevent conflicts. The IP can be chosen in the vpn_cidr network,
as long as it is not the IP given to the gateway (which is the first in the network by default).

networks Networks group define “virtual” hosts. These hosts exist purely for provisioning purpose. No machines are
associated with them.

3.3. Inventory 51

https://www.ansible.com/
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#hosts-in-multiple-groups
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#hosts-in-multiple-groups
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html#the-auto-plugin
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#hosts-in-multiple-groups

Krake, Release 1.0.0

subnet_name Subnet name

subnet_cidr Subnet Classless Inter-Domain Routing definition (e.g. 192.168.0.0/24)

public_network Public network type (e.g. shared-public-IPv4)

router_name Router name

common_secgroup_name Secure group name

central_idps Central IdP host group used for keystone federation of Krake infrastructure.

network Inventory name of the network on which this IdP should be deployed

devstacks Devstack host group used for deployment of Krake devstack backends.

id Unique DevStack ID. This ID is also used to define the IP network of the DevStack instance in
the private network

network Inventory name of the network on which this DevStack should be deployed

idp Inventory name of the IdP that should be used for federation by this DevStack

prometheus Inventory name of the Prometheus server that should be used for the monitoring of this
DevStack backend

magnum_clusters Magnum cluster host group used for deployment of magnum clusters on underlying devstack
backend.

name Magnum cluster name

devstack Inventory name of underlying devstack backend which hosted the magnum cluster deploy-
ment

prometheus Inventory name of the Prometheus server that should be used for the monitoring of this
magnum cluster

use_keystone Enables keystone deployment on this magnum cluster

minikube_clusters Minikube cluster host group used for deployment of minikube clusters.

name Minikube cluster name

network Inventory name of the network on which this minikube cluster should be deployed

idp Inventory name of the IdP that should be used for federation by this minikube

use_keystone Enables keystone deployment on this minikube cluster

prometheus Prometheus host group used for deployment of Prometheus monitoring server.

hostname Prometheus VM host name

network Inventory name of the network on which this minikube cluster should be deployed

krake_apps Krake application host group used for deployment Krake infrastructure

hostname Krake VM host name

network Inventory name of the network on which this minikube cluster should be deployed

3.4 Bootstrapping

After Krake has been installed and runs, the database is still empty. To allow easy insertion of resources during
initialisation, a bootstrap script is present, namely: krake_bootstrap_db. It is used along with YAML files in
which the resources are defined.

52 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

Requirements for bootstrapping:

• Krake should be installed;

• the database should be started.

3.4.1 Usage

Workflow

The script is given several files, each with one or several resource definitions. These definitions should follow the
structure of the data defined in krake.data. See Structure.

If the insertion of at least one resource fails, all previous insertions are rolled back. This ensures that the database
remains in a clean state in all cases.

The insertion will be rolled back in the following cases:

• the structure of a resource was invalid and its deserialization failed;

• a resource belongs to an API or a kind not supported by the bootstrapping script;

• a resource is already present in the database. This can be overridden using the --force flag (see the force
argument). In this case, a resource already present will be replaced in the database with the currently read
definition. In case of rollback, the previous version of the resource will be put back in the database.

Command line

The simplest command is to give one or several files as input, for example:

$ krake_bootstrap_db file_1.yaml file_2.yaml

Other arguments can be used:

--db-host (address): If the database is not present locally, the host or address can be specified explicitly. Default:
localhost.

--db-port (integer): If the database is not present locally, the port can be specified explicitly. Default: 2379.

--force: If set, when the script attempts to insert a resource that is already in the database, the resource will be
replaced with its new definition. If not, an error occurs, and a rollback is performed.

The content of the file can alternatively be passed by stdin, using the - option:

$ cat file_1.yaml | krake_bootstrap_db -

This can become very useful when starting the command with a container running Krake. If the file is not present in
the container, and you do not want to use a volume, you can still execute the following:

$ docker exec -i <krake_container> krake_bootstrap_db - < file_1.yaml

3.4.2 Structure

Only resources defined in krake.data that are augmented with the krake.data.persistent decorator should
be inserted with the krake_bootstrap_db script.

Each file must have a YAML format, with each resource separated with the --- separator. The API name, the resource
kind and its name must be specified (in the metadata for the name).

Thus the minimal resource to add must have the following structure:

3.4. Bootstrapping 53

Krake, Release 1.0.0

api: foo
kind: Bar
metadata:

name: foo_bar

This will add a Bar object with the name foo_bar, with Bar defined in the API with name foo.

An actual resource would have more values to fill, see the following example with a Krake Role and RoleBinding
definitions:

api: core
kind: Role
metadata:

name: my-role
rules:
- api: 'my-api'

namespaces:
- 'my-namespace'
resources:
- 'my-resource'
verbs:
- list
- get

api: core
kind: RoleBinding
metadata:

name: my-rolebinding
roles:
- my-role
users:

- me

Danger: The structure of a resource added in the database is checked against the definition of this resource kind.
This means that the attributes’ name and kind are checked. However, the bootstrapping script does not ensure that
the relationships between the resources are valid.

For instance, the RoleBinding my-rolebinding refers to the Role my-role. If this role is not in the
database, or its name has been misspelled, the bootstrapping script will not detect it, and the database will be
inconsistent.

3.4.3 Existing definitions

Some files are already present in the Krake repository with the definitions of different resources.

Authorization

To use the RBAC authorization mode, roles need to be defined, using Role objects. They need to be present in the
database, and can either be added manually, using the API, or with the bootstrapping:

$ krake_bootstrap_db bootstrapping/base_roles.yaml

54 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

Development and tests

To test the migration, support/prometheus or support/prometheus-mock script can be used, or simply
static metrics. However, in this case, GlobalMetric and GlobalMetricsProvider objects need to be created.
Two bootstrap definition files are present in support/ for adding Prometheus and static metrics and metrics provider,
respectively prometheus_metrics.yaml and static_metrics.yaml.

They can be easily processed using:

$ krake_bootstrap_db support/prometheus_metrics.yaml support/static_metrics.yaml

3.5 Security principles

This chapter discusses the different security options supported by Krake, and gives explanation on how to set up Krake
securely.

3.5.1 Overview

When sending a request to the API, Krake uses two mechanisms to limit resource access:

• first the authentication of the user;

• then, using this information, an authorization mechanism describes which resources can be accessed by this
user.

Important: There are no user in Krake as actual stored resource. Krake does not manage users, they should be
handled by external services (for instance Keystone authentication). Users are identified internally using simple strings.
The authentication method ensures that the right string is obtained from a request, and the authorization ensures that
the user represented by this string has the right accesses to the resources.

Important: If a Krake component (a controller, or Rok) communicates with the API, the same process is performed.
In this case, the user is actually the component itself.

Authentication

To authenticate the user, five different mechanisms can be used: static, Keystone, Keycloak, TLS or anonymous. When
a request is received by the API, all the mechanisms enabled in this list will attempt to authenticate the user that sent
the request. If the first failed, the second will try, and so on, until all failed, and an HTTP error “Unauthorized (401)”
will be sent back to the API. The first that succeeds returns the user that has been authenticated. It is then used during
the authorization process.

The order of priority between the authentication mechanisms is as follow (if the mechanisms are enabled):

static: This mechanism should never be used in production. When enabled, this mechanism will authenticate
any request as coming from a user with a given username. This username needs to be specified in the API
configuration.

Keystone: authenticate incoming requests on the API using an OpenStack Keystone server. A token must first be
requested to the Keystone server. This token should then be sent along with any request to the API as the value
of the Authorization header in the HTTP request. See Keystone authentication for more information.

3.5. Security principles 55

https://docs.openstack.org/keystone/latest/

Krake, Release 1.0.0

Keycloak: authenticate incoming requests on the API using a Keycloak server. A token must first be requested to
the Keycloak server. This token should then be sent along with any request to the API as the value of the
Authorization header in the HTTP request. See Keycloak authentication for more information.

TLS: authenticate incoming requests on the API using the common name attribute of certificates. This name is then
used as username. It means TLS needs to be enabled on the API, and thus, on all Krake components. See
Certificate authentication for more information.

Anonymous: This mechanism should never be used in production. Set using allow_anonymous to true in the
configuration. If the user has not been authenticated by any previous mechanism, and if anonymous users are
allowed, the user will be authenticated as system:anonymous.

The authentication mechanisms can be enabled or disabled in the API configuration file, along their specific parameters
(see Authentication and authorization).

Authorization

The second phase of security is the authorization of an authenticated user. The user is verified against the chosen
authorization policy, called authorization mode in the following. If a user has the right to access and perform the
chosen action on the resource currently requested, the request is processed. Otherwise the API returns an HTTP 403
error.

Krake uses three different authorization modes to connect to the API, always-allow, always-deny and RBAC.

always-allow all requests are always accepted, for any user;

always-deny all requests are always rejected, for any user;

RBAC (for Role-Based Access Control) Krake will use roles to decide the resources that a user can access, and the
action that this user can perform on these resources.

Warning: The first two modes are only present for testing purposes and should never be used in production. Only
RBAC should be used in production.

The authorization mode can be chosen in the configuration file (see Authentication and authorization).

3.5.2 Keystone authentication

The Keystone authentication uses the OpenStack Keystone service to obtain the identity of a user. The workflow to
send a request to the API is as follow if Keystone authentication is enabled:

0. (the user must be registered in Keystone;)

1. the user sends a request to the Keystone server to obtain a token;

2. an HTTP request is sent to the API, with this token used in the header.

Step 1: Kesytone token request

To request a token to the Keystone server, you can use the following example by replacing the values with the corre-
sponding ones for your setup:

56 Chapter 3. Administrator Documentation

https://docs.openstack.org/keystone/latest/

Krake, Release 1.0.0

$ curl -sD - -o /dev/null -H "Content-Type: application/json" \
http://<keystone_server>/v3/auth/tokens \
-d '{

"auth": {
"identity": {
"methods": [
"password"

],
"password": {

"user": {
"domain": {
"name": "<keystone_user_domain_name>"

},
"name": "<keystone_username>",
"password": "<keystone_password>"

}
}

},
"scope": {
"project": {

"domain": {
"name": "<keystone_project_name>"

},
"name": "<keystone_project_domain_name>"

}
}

}
}'

The following example is for the support/keystone/keystone script:

$ curl -sD - -o /dev/null -H "Content-Type: application/json" \
http://localhost:5000/v3/auth/tokens \
-d '{

"auth": {
"identity": {
"methods": [
"password"

],
"password": {

"user": {
"domain": {
"name": "Default"

},
"name": "system:admin",
"password": "admin"

}
}

},
"scope": {
"project": {

"domain": {
"name": "Default"

},
"name": "system:admin"

}
}

(continues on next page)

3.5. Security principles 57

Krake, Release 1.0.0

(continued from previous page)

}
}'

You will get an output close to the following, where you can find the expected token:

HTTP/1.0 201 CREATED
Date: Tue, 42 Dec 2077 10:02:11 GMT
Server: WSGIServer/1.0 CPython/3.8
Content-Type: application/json
Content-Length: 1234
X-Subject-Token: XXXXXXXXXXXXXXXXXXXXXX <--- this is the token
Vary: X-Auth-Token
x-openstack-request-id: xxx-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

From this output, you can obtain your token. A suggestion is to keep it in your shell as environment variable, for
instance:

$ TOKEN=XXXXXXXXXXXXXXXXXXXXXX

Step 2: Keystone token usage

Using your token, you can then communicate with the Krake API:

$ curl -k -H "Accept: application/json" -H "Authorization: $TOKEN" \
<scheme>://<krake_api>/<query>

For instance, to get the current authenticated user on Krake installed locally, with TLS support:

$ curl --cacert ./tmp/pki/ca.pem -H "Accept: application/json" -H
"Authorization: $TOKEN" https://localhost:8443/me

3.5.3 Keycloak authentication

The Keycloak authentication uses a Keycloak service to obtain the identity of a user. The workflow to send a request
to the API is as follow if Keycloak authentication is enabled:

0. (the user must be registered in Keycloak;)

1. the user sends a request to the Keycloak server to obtain a token;

2. an HTTP request is sent to the API, with this token used in the header.

Step 1: Keycloak token request

Query

To request a token to the server, multiple ways are supported by Keycloak. If the server has been set up for direct
access grants, you can use the following example by replacing the values with the corresponding ones for your setup:

$ curl -s http://localhost:9080/auth/realms/krake/protocol/openid-connect/token \
-d 'grant_type=password' \
-d 'username=<username>' \

(continues on next page)

58 Chapter 3. Administrator Documentation

https://www.keycloak.org/

Krake, Release 1.0.0

(continued from previous page)

-d 'password=<password>' \
-d 'client_id=<client_name>' \
-d 'client_secret=<client_secret>'

For the support/keycloak script, you can use the following command to get a token:

$ support/keycloak token

Internally, something similar to the following is used, with all values set by the script:

$ curl -s http://localhost:9080/auth/realms/krake/protocol/openid-connect/token \
-d 'grant_type=password' \
-d 'username=krake' \
-d 'password=krake' \
-d 'client_id=krake_client' \
-d 'client_secret=AVeryCoolAndSecureSecret'

Response

Using the cURL queries, you will get a JSON with the following structure:

{
"access_token":"XXXXXXXXXXXXXXXX",
"expires_in":60,
"refresh_expires_in":1800,
"refresh_token":"<refresh_token>",
"token_type":"bearer",
"not-before-policy":0,
"session_state":"9c22a6df-0997-4d3d-a540-239f85346008",
"scope":"profile email"

}

From this output, you can obtain your token from the access_token field. A suggestion is to keep it in your shell
as environment variable, for instance:

$ TOKEN=XXXXXXXXXXXXXXXXXXXXXX

With the support/keycloak direct command, you get the token directly, thus you could simply use:

$ TOKEN=$(support/keycloak token)

Step 2: Keycloak token usage

Using your token, you can then communicate with the Krake API:

$ curl -k -H "Accept: application/json" -H "Authorization: $TOKEN" \
<scheme>://<krake_api>/<query>

For instance, to get the current authenticated user on Krake installed locally, with TLS support:

$ curl --cacert ./tmp/pki/ca.pem -H "Accept: application/json" -H
"Authorization: $TOKEN" https://localhost:8443/me

3.5. Security principles 59

Krake, Release 1.0.0

3.5.4 Certificate authentication

With the TLS support enabled on the API configuration, the requests to the API can only be performed using HTTPS.
This allows Krake to obtain information about the sender through the certificates. Especially, Krake can use the
common name to identify the user that sent the request.

This authentication mechanism should always be used in a production environment. It also allows the authentication
of the Krake components. The scheduler, the garbage collector or any other controller should have a certificate with
a specific common name. This name can then be used along with the RBAC mode and a specific RoleBinding to
allow the controller to access the resources it needs.

Important: With TLS support, all Krake components will use certificates with their corresponding key. All compo-
nents (API, controllers and rok) must use the same CA, and the certificates they use for communication must also be
signed using this CA.

Note: If an external endpoint is specified in the Kubernetes controller configuration for the complete hook, then this
host must also be specified in the certificate of the API.

3.5.5 RBAC Authorization

The Role-Based Access Control (or RBAC) is a model of resource access. Each user is given one or several roles, and
each role has access to one or several resources, and/or actions.

When RBAC is enabled, roles need to be defined and bound to users using respectively Role and RoleBinding
core API objects. They have their own endpoints for creation, update, deletion. . . (/core/roles and /core/
rolebindings respectively).

Role bindings

The RoleBinding objects defines a connection between one or several roles to one or several users.

Roles

A Role defines different rules: each rule describes which resource can be accessed by a user with this role, and which
action can be performed. The Role can then be applied to several users, which is the purpose of RoleBinding
objects.

Example

In the previous example, the user 1 and 2 have both been given the roles A and C. It means they can both get and list
the resources X, Y and Z.

Let’s now say we want to have the following minimal example:

api: core
kind: Role
metadata:

name: my-role

(continues on next page)

60 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

3.5. Security principles 61

Krake, Release 1.0.0

(continued from previous page)

rules:
- api: 'my-api'

resources:
- 'my-resource'
namespaces:
- 'my-namespace'
verbs:
- list
- get

- api: 'my-other-api'
resources:
- 'first'
- 'second'
namespaces:
- 'my-namespace'
verbs:
- update
- delete

In the above example definition of a Role, a user with this role can:

• list or read the my-resource resources defined in the my-api API, that belong to the my-namespace
namespace (first rule);

• update or delete the first and second resources defined in the my-other-API API, also in the
my-namespace namespace (second rule).

api: core
kind: RoleBinding
metadata:

name: my-rolebinding
roles:
- my-role
- my-other-role
users:
- me
- he
- she

In the above example, the RoleBinding object binds the my-role and the my-other-role to the users me, he
and she.

3.5.6 Security Guidelines

Warning: DISCLAIMER: The steps described in this chapter do not ensure a fully secure Krake infrastructure.
They are the minimal security steps that are recommended. An actual fully secure setup need general security
measures on all its components and on the setup itself, not only for the Krake infrastructure

This section is a guide that describes all the steps to create a minimal secure Krake infrastructure.

What you need:

• Krake installed;

62 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

• the Krake repository (optional);

• a certificate authority (CA) and at least five certificates and their respective keys (signed with this CA). To follow
this guide easily, the common names of the certificates shall be:

– system:gc

– system:scheduler

– system:kubernetes

– system:magnum

– system:infrastructure

– system:admin

– system:complete-signing

– system:shutdown-signing

– an additional certificate is necessary for the API.

These names are the ones present in the bootstrapping file called base_roles.yaml. They can naturally be
modified to follow your needs.

The support/pki script can also generate them for testing purpose, example:

$ support/pki system:admin

The certificate with system:complete-signing will be used for signing new certificates, thus would need to be
set for signing purposes:

$ support/pki system:complete-signing --intermediate-ca

The certificate with system:shutdown-signing will be used for signing new certificates, thus would need to be
set for signing purposes:

$ support/pki system:shutdown-signing --intermediate-ca

If Krake is not deployed locally, you also need to set its external endpoint as TLS subject alternative names, for
instance:

$ support/pki system:api-server --host 1.2.3.4 --host example.com

Configuration of the API

The first step is to configure the API to use the right authentication and authorization modes.

Configuration of the authentication:

First, disable the static and anonymous authentications in the API configuration:

authentication:
allow_anonymous: false

#...
static:

(continues on next page)

3.5. Security principles 63

Krake, Release 1.0.0

(continued from previous page)

enabled: false
name: system:admin

Then, enable the TLS support on the API:

tls:
enabled: true
cert: <path_to_your_certificate>
key: <path_to_your_key>

client_ca: <path_to_your_client_ca>

If you want to use Keystone or Keycloak authentication additionally, you should set the configuration as well:

authentication:
...

strategy:
Keystone authentication
keystone:

enabled: true
endpoint: <your_keystone_endpoint>

Keycloak authentication
keycloak:

enabled: true
endpoint: <your_keystone_endpoint>
realm: <your_keycloak_realm>

Krake contains an example Keystone server under support/keystone/Dockerfile. This is a docker file,
which creates an image with a secure Keystone instance, that can be accessed over HTTPS.

Configuration of the authorization:

To set the RBAC authorization mode, change the following line in the API configuration:

authorization: RBAC

Configuration of the Controllers

You need to enable the TLS support on all controllers:

tls:
enabled: true
client_ca: <path_to_your_client_ca>
client_cert: <path_to_your_client_cert>
client_key: <path_to_your_client_key>

The API endpoint must be modified to use HTTPS:

api_endpoint: https://<endpoint>

64 Chapter 3. Administrator Documentation

Krake, Release 1.0.0

This certificate must indicate a common name only used by the current controller. Let’s refer to it as
system:<controller> as an example. Using TLS authentication, system:<controller> will be the user-
name of the Controller every time this controller will connect to the API, see Authentication

When using bootstrapping, the “username” of the controllers must be adapted to correspond to the ones in the
RoleBinding objects added in the database. See Database bootstrapping.

If the bootstrapping file present in the repository is used (base_roles.yaml), the common names of the controller
certificates must be:

• system:gc for the garbage collector;

• system:scheduler for the scheduler;

• system:kubernetes for the Kubernetes controller;

• system:complete-signing for the signing certificate of the “complete” hook, see Complete.

• system:shutdown-signing for the signing certificate of the “shutdown” hook, see Shutdown.

• system:magnum for the Magnum controller.

Configuration of rok

api_url: https://<endpoint> # must use HTTPS
user: <rok_user>

tls:
enabled: true
client_ca: <path_to_your_client_ca>
client_cert: <path_to_your_client_cert>
client_key: <path_to_your_client_key>

The common name used by the certificate must match the one from <rok_user>. This name will be used as
username.

If the bootstrapping file present in the repository is used (base_roles.yaml), the certificate used by the adminis-
trator must have system:admin as common name, and <rok_user> must then match it.

Database bootstrapping

For the RBAC authorization mode to work, Role and RoleBinding objects need to be put in the database.

They can be either added manually using the command line, or more simply added by using bootstrapping (see Boot-
strapping). The roles for the Krake components and the administrator are defined already in bootstrapping/
base_roles.yaml. Thus they can all be added with:

$ krake_bootstrap_db bootstrapping/base_roles.yaml

When using the base_roles.yaml, the usernames in the RoleBinding for the controllers must match the ones
used by the certificates.

For instance for the garbage collector, if the RoleBinding is defined like this:

api: core
kind: RoleBinding
metadata:

name: rolebinding:system:gc

(continues on next page)

3.5. Security principles 65

Krake, Release 1.0.0

(continued from previous page)

roles:
- role:system:gc
users:
- system:gc

it means that the certificate common name for the garbage collector must be system:gc. It is probably easier to
adjust the base_roles.yaml to match your needs.

Additional roles and role bindings can also be added to the database using the same bootstrapping method, by modi-
fying the base_roles.yaml, or by writing another file and bootstrapping it into the database.

Administrator

The role role:system added in the base_roles.yaml corresponds to an administrator role, and the role binding
rolebinding:system allows a user called system:admin full access to all Krake resources from all APIs.
These two can naturally be modified if the administrator should have another name.

Important: Note that if no administrator user is created, Role and RoleBinding objects cannot be created
through the API, but must be added to the database directly.

3.5.7 CORS

The Cross-origin resource sharing (CORS) mechanism was enabled on Krake but the fields are set to be quite non-
restrictive. By default, the Access-Control-Allow-Origin is set to *. With this setup, sending request
through a browser could be dangerous. A user could first connect to a valid website with some allowed authen-
tication token and send requests to Krake. Then the user goes on a malicious website, which may be able to
reuse the token, as the default value accepts any origin, so any URL. To prevent this situation, the value for the
Access-Control-Allow-Origin field can be set for the Krake API, see the Authentication and authorization
part of the configuration.

66 Chapter 3. Administrator Documentation

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

CHAPTER 4

Developer Documentation

This section of the documentation is dedicated to all contributors of the project. It describes the overall system architec-
ture, explains the core concepts of the system and development principles that should be followed when contributing.

Furthermore, the layout of the repository is explained and a complete Python API reference of all modules is provided.

4.1 Architecture

This chapters gives a high-level overview about the software architecture of Krake. The following figure gives an
overview about the components of Krake. The components are described in more detail in the following sections.

4.1.1 API

The API is the central component of Krake. It holds the global state of the system. Krake uses an abstraction for real
world objects – e.g. Kubernetes clusters or clouds (e.g. OpenStack) – managed or used by it. The objects are repre-
sented as RESTful HTTP resources called API resources. These resources are stored in an associated etcd database.
Each resource is a nested JSON object following some conventions that can be found in section API Conventions.

The API is declarative: instead of sending commands one-by-one to the infrastructure, the user just defines a desired
end state, telling the infrastructure exactly how it should look like. Then, the Control Plane works in sync with the
infrastructure to find the best way to get there. This means that the actual control flow is not exposed to the user.

4.1.2 Control Plane

The control plane is responsible for bringing the declarative API to life: it synchronizes the declared desired state of a
API resource with the managed real world object (see also Control Plane on the concepts chapter).

The control plane consists of a set of controllers. Normally, one controller is responsible for one kind of resource,
e.g. the Kubernetes Application controller manages Kubernetes Application resources. Only API resources with a
changing state are managed by a controller.

System-level tasks are also handled by controllers:

67

https://kubernetes.io/
https://www.openstack.org/
https://etcd.io/

Krake, Release 1.0.0

Fig. 1: Krake components

68 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Garbage Collector Resources can depend on other resources. If an API resource is deleted, dependents of the re-
source are also deleted automatically. This is called cascading deletion. The garbage collector is the controller
responsible for executing the cascading deletion (see Garbage Collection for more details).

Infrastructure Controller The infrastructure controller performs life-cycle management of the real-world Kuber-
netes clusters. (see Infrastructure Controller for more details).

Scheduler The scheduler is a very important controller responsible for binding applications – high-level API re-
sources for executing workloads – to a platform managed by Krake.

Tip: For example, the scheduler binds Kubernetes applications to Kubernetes clusters or selects clouds (e.g.
OpenStack) for creating new Kubernetes clusters.

The scheduler makes its decision based on a set of metrics provided by external metrics providers (see Schedul-
ing for more details) as well as the availability of the clusters. The decisions are periodically reevaluated, which
could potentially lead to migration of applications.

Control Loop

The following figure describes the basic control loop that is executed by any controller.

Fig. 2: Operator Pattern

4.1. Architecture 69

Krake, Release 1.0.0

The observation of an API resource is done via watching, a long running HTTP request to the API notifying about
changes of resources:

$ curl http://localhost:8080/kubernetes/namespaces/testing/applications?watch
{"type": "UPDATED", "object": {"metadata": ..., "spec": ..., "status": ...}}
{"type": "DELETED", "object": {"metadata": ..., "spec": ..., "status": ...}}
{"type": "UPDATED", "object": {"metadata": ..., "spec": ..., "status": ...}}
...

Controller will read this feed, evaluate differences between the desired state and the state of the managed real world
object, act accordingly to this difference and update the status of the resource.

4.2 Concepts

Krake is heavily inspired by the concepts of Kubernetes. If you are familiar with the internal mechanisms of Kuber-
netes you should find many similarities within Krake.

4.2.1 Overview

The central service of Krake is a RESTful HTTP API. The API is structured in groups of APIs covering different
technologies, e.g. core for the core functionalities or kubernetes for Kubernetes-specific features. Each API
comprises multiple kinds of resources, e.g. the kubernetes API contains Application or Cluster resources. The
resources are used to describe the desired state. The user can update the desired state by updating the resource via
simple PUT requests to the API.

In concept, every resource is handled by a Controller. The responsibility of a controller is to bring the described
desired state of a resource in sync with the real world state. Some of the resources act as mere data bags, e.g.
kubernetes/Cluster resources simply describe how to connect to an existing Kubernetes cluster. These resources do
not have a corresponding controller because no logic is needed for syncing desired and real world state.

4.2.2 API Conventions

Krake uses abstractions for real world resources managed by Krake, e.g. Kubernetes clusters spawned on top of an
OpenStack deployment. These abstractions are represented as API resources encoded as nested JSON objects.

Metadata

Every resource MUST have the following metadata in a nested field called metadata with the following structure:

namespace A namespace is used to isolate access resources. Normally, a user does only get access to a specific
namespace. See Authentication and Authorization for more details. This field is immutable which means a
resource cannot be migrated to another namespace.

name A string uniquely identifying a resource in its namespace. This name is used in URLs when operating on an
individual resource. This field is immutable.

uid A unique string in time and space used to distinguish between objects of the same name that have been deleted
and recreated. This field is immutable.

finalizers A list of strings that can be added by controllers to block the deletion of the resource in order to do some
clean up work (finalizing). A resource MUST not be deleted if there is at least one finalizer.

Controllers SHOULD process only finalizers that were added by them and that are at the tail of the list. This
ensures a strict finalizing order.

70 Chapter 4. Developer Documentation

Krake, Release 1.0.0

created The timestamp when the resource was created. This field is immutable.

modified The timestamp when the spec or metadata field of the resource was changed.

deleted The timestamp when the resource was deleted. If this field is set, the resource is in the in deletion state.
This transition is irreversible. In this state, no changes to the resource are allowed except removing items from
finalizers and updating the status. If finalizers is empty and the resource is in deletion it will be
removed from the database. See Garbage Collection for more details.

Spec and Status

By convention, the Krake API distinguishes between desired state of a resource – a nested field called spec – and its
real world state – a nested field called status.

Every resource representing a real world object managed by Krake SHOULD have a field called spec. If the state
of the represented object cannot change, the resource MAY have a spec field only which MAY be renamed to a more
appropriate name.

etcd

Internally, the Krake API uses etcd – a distributed and reliable key-value store – as persistence layer. But this is
considered an implementation detail and no etcd-specific mechanisms are exposed via the REST API. This means
that the underlying database could be potentially replaced in the future if the requirements of the project change. The
“killer” feature of etcd is the watching of keys and prefixes for changes.

Note: The distributed nature of etcd and its built-in support for observing changes for specific keys were the main
motivation why Krake switched from a SQL-based persistence layer to etcd.

4.2.3 Control Plane

The API does not implement control logic. The task of reconciling between desired state and real world state is done
by so-called controllers. Controllers are independent services watching API resources and reacting on changes. The
set of all controllers forms the Control Plane of Krake.

Controllers communicate with the API server: the desired state is fetched from the API and status updates are pushed
to the API. In theory, controllers can be programmed with any technology (programming language) capable of com-
municating with a REST HTTP interface.

Note: The first system architecture of Krake was event-based using message queuing (RabbitMQ). The main issue
with event-driven systems is that the they get out-of-sync if a message gets lost. Hence, a lot of effort is involved to
make sure that no message loss occurs.

On the other hand, level-based logic operates given a desired state and the current observed state. The functionality is
resilient against loss of intermediate state updates. Hence, a component can recover easily from crashes and outages,
which makes the overall system more robust. This was the motivation for moving from an event-based system with
message queuing to a level-based system with reconciliation.

4.2.4 Authentication and Authorization

Access to the API is provided through a two-phased process.

4.2. Concepts 71

https://etcd.io/

Krake, Release 1.0.0

Authentication Each request to the Krake API is authenticated. Authentication verifies the identity of the user. There
are multiple authentication providers and the API can be extended by further authentication mechanisms. If no
identity is provided, the request is considered to be anonymous. For internal communication between controllers
and API, TLS certificates SHOULD be used.

Authorization After the identity of a user is verified, it needs to be decided if the user has permission to access a
resource.

Krake implements a simple but powerful role-based access control (RBAC) model. The core API provides
Role resources describing access to specific operations on specific resources potentially in specific namespaces.
A user is assigned to a role by another core resource called RoleBinding.

Roles in Krake are permissive only. There is no way to deny access to a resource through a role. At least one
role a user is bound to needs to allow access to the requested resource and operation. Otherwise access is denied.

4.3 Directories

The Krake repository contains several main directories, which will be described here.

ansible Contains all the configuration and the playbooks to install Krake using Ansible.

docker Contains all file to start Krake in a Docker infrastructure.

docs Contains the source files for Krake documentation.

infra Contains scripts to deploy Krake. Not up-to-date.

krake Contains the source code and the unit tests for the Krake application. More details are given in the Krake
Reference.

rok Contains the source code and the unit tests for the Rok command. More details are given in the Rok Reference.

support Contains the utility scripts to create a simple local test environment.

4.4 Design Principles

This section contains a number of principles that should be followed when extending Krake. The principles are very
similar to the Kubernetes design principles.

4.4.1 API

See also API Conventions.

• All APIs should be declarative.

• API resources should be complementary and composable, not opaque wrappers.

Note: For example, a Kubernetes cluster could be created on top of a managed OpenStack project.

• The control plane should be transparent – there are no hidden internal APIs.

• Resource status must be completely reconstructable by observation. Any history kept (caching) must be just an
optimization and not required for correct operation.

72 Chapter 4. Developer Documentation

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/principles.md

Krake, Release 1.0.0

4.4.2 Control Logic

• Functionality must be level-based, meaning the system must operate correctly given the desired state and the
current/observed state, regardless of how many intermediate state updates may have been missed. Event/Edge-
triggered behavior must be just an optimization.

Note: There should be a CAP-like theorem regarding the trade-offs between driving control loops via polling
or events about simultaneously achieving high performance, reliability, and simplicity – pick any two.

• Assume an open world: continually verify assumptions and gracefully adapt to external events and/or actors.

Tip: For example, Krake allows users to kill Kubernetes resources under control of a Kubernetes application
controller; the controller just replaces the killed resource.

• Do not assume any state transition or state that cannot be determined by observation.

• Do not assume a component’s decisions will not be overridden or rejected, nor for the component to always
understand why.

Tip: For example, etcd may reject writes. The scheduler may not be able to schedule applications. A Kuber-
netes cluster may reject requests.

• Retry, but back off and/or make alternative decisions.

• Components should be self-healing.

Tip: For example, if some state must be kept, e.g. cached, the content needs to be periodically refreshed, so
that if an item does get incorrectly stored or a deletion event is missed, the kept state will be soon synchronized,
ideally on timescales that are shorter than what will attract attention from humans.

• Component behavior should degrade gracefully. Actions should be prioritized such that the most important
activities can continue to function even when overloaded and/or in states of partial failure.

4.4.3 Architecture

• Only the API server communicate with etcd, and no other components, e.g. scheduler, garbage collector, etc.

• Components should continue to do what they were last told in the absence of new instructions, e.g. due to
network partition or component outage.

• All components should keep all relevant state in memory all the time. The API server writes through to etcd,
other components write through to the API server, and they watch for updates made by other clients.

• Watch is preferred over polling.

4.4.4 Extensibility

• All components should be replaceable. This means there is no strong coupling between components.

4.4. Design Principles 73

https://en.wikipedia.org/wiki/CAP_theorem

Krake, Release 1.0.0

Tip: For example, the different scheduler should be usable without any changes in another component.

• Krake is extended with new technologies/platforms by adding new APIs.

4.4.5 Availability

Note: High-availability (HA) is about removing single point of failure (SPOF).

• HA is achieved by service replication.

Todo: It needs to be decided on which level replication is introduced.

Coarse grained Replicate “Krake master” with all included components, e.g. API server, controllers etc.

Fine grained Replicate single components. If a component is stateful – relevant state should be kept in memory as
stated in section Architecture – the components should follow an active-passive principle where only one replica
of a component is active at the same time. A etcd lease may be a good option for this but only the API should
have direct access to etcd. A solution for this would be to introduce special API endpoints for electing a leader
across multiple replicas.

4.4.6 Development

• Self-hosting of all components is the goal.

• Use standard tooling and de facto standards of the Python ecosystem.

• Keep dependencies as small as possible, but do not reinvent the wheel.

4.5 Scheduling

This part of the documentation presents the Krake scheduling component and how the Krake resources are handled by
the scheduling algorithm.

The Krake scheduler is a standalone controller that processes the following Krake resources:

• Application

• Cluster

• Magnum cluster (Warning: Due to stability and development issues on the side of Magnum, this feature isn’t
actively developed anymore.)

The scheduler algorithm selects the “best” backend for each resource based on metrics of the backends and the re-
source’s constraints and specifications. The following sections describe the application and Magnum cluster handlers
of the Krake scheduler.

74 Chapter 4. Developer Documentation

https://etcd.io/docs/v3.3.12/dev-guide/interacting_v3/#grant-leases

Krake, Release 1.0.0

4.5.1 Application handler

The application handler is responsible for scheduling and rescheduling (automatic migration) of the applications with
non-deleted and non-failed states. Applications with deleted or failed state are omitted from the scheduling. Currently,
the application handler considers every Kubernetes cluster.

Scheduling of Applications

• At first, the scheduler checks, if the clusters that will be considered and filtered to host the application, are even
ONLINE. If a cluster isn’t reachable, it is not considered in the scheduling process.

• The application handler evaluates if all constraints of an application match the available Kubernetes cluster
resources. The application constraints define restrictions for the scheduling algorithm. Currently, the custom
resources constraint, the cluster label constraint and the metric constraint are supported, see Constraints. This
is a first filtering step.

• Selected Kubernetes clusters could contain metrics definition. If the cluster contains metrics definition, the
application handler fetches metric values from the corresponding metrics providers which should be defined in
the metric resource specification, see Metrics and Metrics Providers.

• Then, the score for each Kubernetes cluster resource is computed. The cluster score is represented by a decimal
number and is computed from Kubernetes cluster stickiness and metric values and weights. More information
on stickiness in the Stickiness section. The Kubernetes clusters with defined metrics are preferred. It means
clusters which are not linked to any metric have a lower priority than the ones with linked metrics:

– If there are no cluster with metrics: the score is only computed using the stickiness;

– If there are clusters with metrics: the clusters without metrics are filtered out and the scores of the ones
with metrics are computed and compared.

This step is a ranking step.

– The score formula for a cluster without metrics is defined as follows:

𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑎𝑙𝑢𝑒 · 𝑠𝑡𝑖𝑐𝑘𝑦𝑤𝑒𝑖𝑔ℎ𝑡

– The score formula for a cluster with n metrics is defined as follows:

𝑠𝑐𝑜𝑟𝑒 =

(𝑠𝑡𝑖𝑐𝑘𝑦𝑣𝑎𝑙𝑢𝑒 · 𝑠𝑡𝑖𝑐𝑘𝑦𝑤𝑒𝑖𝑔ℎ𝑡) +
𝑛∑︀

𝑖=1

𝑚𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢𝑒𝑖 ·𝑚𝑒𝑡𝑟𝑖𝑐𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑠𝑡𝑖𝑐𝑘𝑦𝑤𝑒𝑖𝑔ℎ𝑡 +
𝑛∑︀

𝑖=1

𝑚𝑒𝑡𝑟𝑖𝑐𝑤𝑒𝑖𝑔ℎ𝑡𝑖

• The application is scheduled to the cluster with the highest score. If several clusters have the same score, one of
them is chosen randomly.

Rescheduling (automatic migration) of Applications

• Applications that were already scheduled are put in the scheduler controller queue again, to be rescheduled later
on. Applications will go through the scheduling process again after a certain interval, which is defined globally
in the scheduler configuration file, see Configuration (defaults to 60s). This parameter is called reschedule_after.
It allows an application to be rescheduled to a more suitable cluster if a better one is found.

4.5. Scheduling 75

Krake, Release 1.0.0

Stickiness

Stickiness is an extra metric for clusters to make the application “stick” to it by increasing its score. Stickiness extra
metric is defined by its value and configurable weight. It represents the cost of migration of an Application, as it is
added to the score of the cluster on which the Application is currently running.

If the value is high, no migration will be performed, as the updated score of the current cluster of the Application will
be too high compared to the score of the other clusters. If this value is too low, or if this mechanism was not present,
any application could be migrated from just the slightest change in the clusters score, which could be induced by small
changes in the metrics value. Thus the stickiness acts as a threshold: the changes in the metrics values has to be higher
than this value to trigger a rescheduling.

The stickiness weight is defined globally in the scheduler configuration file, see Configuration (defaults to 0.1). If the
application is already scheduled to the passed cluster, a cluster stickiness is 1.0 multiplied by the weight, otherwise 0.

Application Handler’s workflow:

The following figure gives an overview about the application handler of Krake scheduler.

Special note on updates:

kube_controller_triggered:

This timestamp is used as a flag to trigger the Kubernetes Controller reconciliation. Together with modified, it’s
allowing correct synchronization between Scheduler and Controller.

It is updated when the chosen Cluster has changed, or once after the update of an Application triggered its
rescheduling, even if this did not change the scheduled cluster. The second case mostly occurs when a user updates it
through the API.

This timestamp is used to force an Application that has been updated by a user to be rescheduled before the
changes are applied by the Kubernetes Controller. Without this mechanism, the Application may be updated, but
rescheduled somewhere else afterwards.

The actual workflow is the same as the one explained in the schema above. However, there is an additional interaction
with the Kubernetes Controller:

• The user updates the Application my-app on the API:

my-app’s modified timestamp is higher than the kube_controller_triggered times-
tamp;

• The Kubernetes Controller rejects the update on my-app in this case;

• The Scheduler accepts the update on my-app and chooses a cluster for the updated my-app;

• as the cluster changed, the kube_controller_triggered timestamp is updated;

my-app’s modified timestamp is lower than the kube_controller_triggered times-
tamp;

• the updated my-app is rejected by the Scheduler because of this comparison;

• the updated my-app is accepted by the Kubernetes Controller;

• the actual updates of the Application are performed by the Kubernetes Controller if needed.

When the Application is rescheduled, if the selected cluster did not change, then the
kube_controller_triggered timestamp is updated only if the rescheduling was triggered by an update
of the Application. If the Application is rescheduled on the same cluster automatically, then the timestamp is not

76 Chapter 4. Developer Documentation

Krake, Release 1.0.0

4.5. Scheduling 77

Krake, Release 1.0.0

updated. This prevents an update of each Application on each automatic rescheduling, which would need to be
handled by the Kubernetes controller.

To sum up, the kube_controller_triggered timestamp represent the last time this version of the Application
was scheduled by the Scheduler.

scheduled:

The scheduled timestamp expresses the last time the scheduling decision changed for the current resource. This
timestamp does not correspond to the time where the Application was deployed on the new cluster, just the time where
the scheduler updated, on the Application, the reference to the cluster where it should be deployed. It is actually
updated during a call from the scheduler to the API to change the binding of the Application.

This timestamp is however not updated if an update of its Application did not lead to a rescheduling, just a re-
deployment.

4.5.2 Cluster handler

The Cluster handler is responsible for scheduling Kubernetes Clusters to the best cloud backend (currently Krake
supports OpenStack as a cloud backend). The Cluster handler should process only Clusters that are not bound to any
Cloud, have non-deleted/non-failed state and also the Clusters should not contain the kubeconfig file in their spec. If
the Cluster contains the kubeconfig file in its spec it is considered as an existing cluster which was registered or created
by Krake and therefore should be ignored by the Cluster handler.

Scheduling of Clusters

• The Cluster handler evaluates if all the constraints of a Cluster match the available cloud resources. The Cluster
constraints define restrictions for the scheduling algorithm. Currently, Cloud label and metrics constraints are
supported, see Constraints.

• If the selected Cloud resources contain metric definitions, the Cluster handler fetches metric values from the
corresponding metrics providers which should be defined in the metric resource specifications, see Metrics and
Metrics Providers.

• Then, the score for each Cloud resource is computed. The Cloud score is represented by a decimal number and
is computed from metric values and weights. If a given Cloud does not contain any metric definition, its score
is set to 0. Therefore, the Clouds with defined metrics are preferred:

– If there are no Clouds with metrics: the score is 0 for all Clouds.

– If there are Clouds with metrics: the Clouds without metrics are filtered out and the scores of the ones with
metrics are computed and compared.

This step is a ranking step.

– The score formula for a Cloud without metrics is defined as follows:

𝑠𝑐𝑜𝑟𝑒 = 0

– The score formula for a Cloud with n metrics is defined as follows:

𝑠𝑐𝑜𝑟𝑒 =

𝑛∑︀
𝑖=1

𝑚𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢𝑒𝑖 ·𝑚𝑒𝑡𝑟𝑖𝑐𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑛∑︀
𝑖=1

𝑚𝑒𝑡𝑟𝑖𝑐𝑤𝑒𝑖𝑔ℎ𝑡𝑖

78 Chapter 4. Developer Documentation

https://www.openstack.org/

Krake, Release 1.0.0

• The Cluster is scheduled to the Cloud with the highest score. If several Clouds have the same score, one of them
is chosen randomly.

The following figure gives an overview about the Cluster handler of the Krake scheduler.

4.5.3 Magnum cluster handler

Warning: Due to stability and development issues on the side of Magnum, this feature isn’t actively developed
anymore.

The Magnum cluster handler is responsible for scheduling Magnum clusters to the best OpenStack project. The
Magnum cluster handler should process only Magnum clusters that are not bound to any OpenStack project and have
non-deleted state. Currently, the Magnum cluster handler considers every OpenStack project.

Scheduling of Magnum clusters

• The Magnum cluster handler evaluates if all the constraints of a Magnum cluster match the available OpenStack
project resources. The Magnum cluster constraints define restrictions for the scheduling algorithm. Currently,
only the OpenStack project label constraints are supported, see Constraints. This is a first filtering step.

• Selected OpenStack project resources could contain metric definitions. If the OpenStack project contains metrics
definition, the Magnum cluster handler fetches metric values from the corresponding metrics providers which
should be defined in the metric resource specifications, see Metrics and Metrics Providers.

• Then, the score for each OpenStack project resource is computed. The OpenStack project score is represented
by a decimal number and is computed from metric values and weights. If a given OpenStack project does
not contain metric definition, its score is set to 0. Therefore, the OpenStack projects with defined metrics are
preferred:

– If there are no project with metrics: the score is 0 for all projects;

– If there are projects with metrics: the projects without metrics are filtered out and the scores of the ones
with metrics are computed and compared.

This step is a ranking step.

– The score formula for a OpenStack project without metrics is defined as follows:

𝑠𝑐𝑜𝑟𝑒 = 0

– The score formula for a OpenStack project with n metrics is defined as follows:

𝑠𝑐𝑜𝑟𝑒 =

𝑛∑︀
𝑖=1

𝑚𝑒𝑡𝑟𝑖𝑐𝑣𝑎𝑙𝑢𝑒𝑖 ·𝑚𝑒𝑡𝑟𝑖𝑐𝑤𝑒𝑖𝑔ℎ𝑡𝑖

𝑛∑︀
𝑖=1

𝑚𝑒𝑡𝑟𝑖𝑐𝑤𝑒𝑖𝑔ℎ𝑡𝑖

• The Magnum cluster is scheduled to the OpenStack project with the highest score. If several OpenStack projects
have the same score, one of them is chosen randomly.

The following figure gives an overview about the Magnum cluster handler of Krake scheduler. “OS project” means
“OpenStack project resource” on the figure.

4.5. Scheduling 79

Krake, Release 1.0.0

80 Chapter 4. Developer Documentation

Krake, Release 1.0.0

4.5. Scheduling 81

Krake, Release 1.0.0

4.5.4 Metrics and Metrics Providers

Overview

Warning: Due to stability and development issues on the side of Magnum, this feature isn’t actively developed
anymore.

This section describes the metrics and their providers used in the Krake scheduling algorithm.

The Krake scheduler filters backends based on defined backend metrics. The appropriate metrics definition can prior-
itize the backend as a potential destination for a given resource.

Krake provides two kinds of Metrics and MetricsProviders. GlobalMetric as well as the
GlobalMetricsProvider can be used throughout the entire Krake infrastructure by all users, apps and
clusters. In contrast, the Metric and MetricsProvider object are bound to a namespace (hence why they’re
called ‘namespaced’) and can only be used in their respective context. In most of the documentation chapters, only
GlobalMetrics are talked about, but namespaced Metrics can also be used to follow these sections.

The metrics for the Kubernetes clusters, Magnum clusters and OpenStack projects resources are defined by the -m or
--metric option in the rok CLI, see Rok documentation. Multiple metrics can be specified for one resource with
the following syntax: <name> <weight>.

Examples:

Kubernetes clusters:
rok kube cluster create <kubeconfig> --global-metric heat_demand_zone_1 0.45

Magnum clusters:
rok os cluster create <cluster_name> --metric heat_demand_zone_1 54

OpenStack projects:
rok os project create --user-id $OS_USER_ID --template $TEMPLATE_ID my-project --
→˓metric heat_demand_zone_1 3

By design, the general Krake metric resource (called GlobalMetric) is a core api object, that contains its value
normalization interval (min, max) and metrics provider name, from which the metric current value should be requested.
For the moment, Krake supports the following types of metrics providers:

• Prometheus metrics provider, which can be used to fetch the current value of a metric from a Prometheus
server;

• Kafka metrics provider, which can be used to fetch the current value of a metric from a KSQL database;

• Static metrics provider, which returns always the same value when a metric is fetched. Different metrics can
be configured to be given by a Static provider, each with their respective value. The static provider was mostly
designed for testing purposes.

The metrics provider is defined as a core api resource (called GlobalMetricsProvider) that stores the access
information for the case of a Prometheus metrics provider, or the metrics values for the case of a Static metrics provider.

Example

api: core
kind: GlobalMetric
metadata:

(continues on next page)

82 Chapter 4. Developer Documentation

https://prometheus.io/
https://github.com/confluentinc/ksql

Krake, Release 1.0.0

(continued from previous page)

name: heat_demand_zone_1 # name as stored in Krake API (for management purposes)
spec:

max: 5.0
min: 0.0
provider:
metric: heat_demand_zone_1 # name on the provider
name: <metrics provider name> # for instance prometheus or static_provider

Prometheus metrics provider
api: core
kind: GlobalMetricsProvider
metadata:

name: prometheus_provider
spec:

type: prometheus # specify here the type of metrics provider
prometheus:
url: http://localhost:9090

Kafka metrics provider
api: core
kind: GlobalMetricsProvider
metadata:

name: kafka_provider
spec:

type: kafka
kafka:
comparison_column: my_comp_col # Name of the column where the metrics names are

→˓stored
table: my_table # Name of the table in which the metrics are stored
url: http://localhost:8080
value_column: my_value_col # Name of the column where the metrics values are

→˓stored

Static metrics provider
api: core
kind: GlobalMetricsProvider
metadata:

name: static_provider
spec:

type: static # specify here the type of metrics provider
static:
metrics:

heat_demand_zone_1: 0.9
electricity_cost_1: 0.1

In the example above, all metrics providers could be used to fetch the heat_demand_zone_1metric. By specifying
a name in spec.provider.name of the GlobalMetric resource, the value would be fetched from a different
provider:

• prometheus_provider for the Prometheus provider;

• kafka_provider for the Kafka provider;

• static_provider for the Static provider (and the metric would always have the value 0.9).

4.5. Scheduling 83

Krake, Release 1.0.0

Note: A metric contains two “names”, but they can be different. metadata.name is the name of the GlobalMetric
resource as stored by the Krake API. In the database, there can not be two resources of the same kind with the exact
same name.

However (if we take for instance the case of Prometheus), two metrics, taken from two different Prometheus servers
could have the exact same name. This name is given by spec.provider.metric.

So two Krake GlobalMetric‘s resources could be called ‘‘latency_from_A‘ and latency_from_B in the database,
but their name could be latency in both Prometheus servers.

The Krake metrics and metrics providers definitions can also be added directly to the Krake etcd database using the
script krake_bootstrap_db, instead of using the API, see Bootstrapping.

4.5.5 Constraints

This section describes the resource constraints definition used in the Krake scheduling algorithm.

The Krake scheduler filters appropriate backends based on defined resource constraints. A backend can be accepted
by the scheduler as a potential destination for a given resource only if it matches all defined resource constraints.

The Krake scheduler supports the following resource constraints:

• Label constraints

• Metric constraints

• Custom resources constraints

The Krake users are allowed to define these restrictions for the scheduling algorithm of Krake.

The following sections describe the supported constraints of the Krake scheduler in more detail.

Label constraints

Krake allows the user to define a label constraint and to restrict the deployment of resources only to backends that
matches all defined labels. Based on the resource, Krake supports the following label constraints:

• The Cluster label constraints for the Application resource

• The Cloud label constraints for the Cluster resource

• The OpenStack project label constraints for the Magnum Cluster resource (Warning: Due to stability and devel-
opment issues on the side of Magnum, this feature isn’t actively developed anymore.)

A simple language for expressing label constraints is used. The following operations can be expressed:

equality The value of a label must be equal to a specific value:

<label> is <value>
<label> = <value>
<label> == <value>

non-equality The value of a label must not be equal to a specific value:

<label> is not <value>
<label> != <value>

inclusion The value of a label must be inside a set of values:

84 Chapter 4. Developer Documentation

Krake, Release 1.0.0

<label> in (<value>, <value>, ...)

exclusion The value of a label must not be inside a set of values:

<label> not in (<value>, <value>, ...)

The Cluster label constraints for the Application and Cluster resources are defined by -L (or
--cluster-label-constraint, --cloud-label-constraint) option in the rok CLI, see Rok
documentation. The constraints can be specified multiple times with the syntax: <label> expression <value>.

Examples:

Application
rok kube app create <application_name> -f <path_to_manifest> -L 'location is DE'

Cluster:
rok kube cluster create <cluster_name> -f <path_to_tosca> -L 'location is DE' ...

Metric constraints

Krake allows the user to define a metric constraint and to restrict the deployment of resources only to backends that
matches the metric constraint. Based on the resource, Krake supports the following metric constraints:

• The Cluster metric constraints for the Application resource

• The Cloud metric constraints for the Cluster resource

A simple language for expressing metric constraints is used. The following operations can be expressed:

equality The value of a label must be equal to a specific value:

<metric> is <value>
<metric> = <value>
<metric> == <value>

non-equality The value of a metric must not be equal to a specific value:

<metric> is not <value>
<metric> != <value>

greater than The value of a metric must be greater than a specific value:

<metric> greater than <value>
<metric> gt <value>
<metric> > <value>

greater than or equal The value of a metric must be greater or equal than a specific value:

<metric> greater than or equal <value>
<metric> gte <value>
<metric> >= <value>
<metric> => <value>

less than The value of a metric must be less than a specific value:

<metric> less than <value>
<metric> lt <value>
<metric> < <value>

4.5. Scheduling 85

Krake, Release 1.0.0

less than or equal The value of a metric must be less or equal than a specific value:

<metric> less than or equal <value>
<metric> lte <value>
<metric> <= <value>
<metric> =< <value>

The metric label constraints for the Application and Cluster resources are defined by -M (or
--cluster-metric-constraint, --cloud-metric-constraint) option in the rok CLI, see Rok
documentation. The constraints can be specified multiple times with the syntax: <metric> expression <value>.

Examples:

Application
rok kube app create <application_name> -f <path_to_manifest> -M 'load = 5'

Cluster
rok kube cluster create <cluster_name> -f <path_to_tosca> -M 'load = 5' ...

Custom resources:

Krake allows the user to deploy an application that uses Kubernetes Custom Resources (CR).

The user can define which CRs are available on his cluster. A CR is defined by the Custom Resource Definition (CRD)
and Krake uses this CRD name with the format <plural>.<group> as a marker.

The supported CRD names are defined by -R or --custom-resource option in rok CLI. See also Rok documen-
tation.

Example:

rok kube cluster create <kubeconfig> --custom-resource <plural>.<group>

Applications that are based on a CR have to be explicitly labeled with a cluster resource constraint. This is used in the
Krake scheduling algorithm to select an appropriate cluster where the CR is supported.

Cluster resource constraints are defined by a CRD name with the format <plural>.<group> using -R or
--cluster-resource-constraint option in rok CLI. See also Rok documentation.

Example:

rok kube app create <application_name> -f <path_to_manifest> --cluster-resource-
→˓constraint <plural>.<group>

4.6 Application hooks

This section describes Application hooks which are registered and called by the Hook Dispatcher in kubernetes appli-
cation controller module.

4.6.1 Complete

The application complete hook gives the ability to signals job completion.

86 Chapter 4. Developer Documentation

Krake, Release 1.0.0

The Krake Kubernetes controller calls the application complete hook before the deployment of the application on a
Kubernetes cluster. The hook is disabled by default. The user can enable this hook with the --hook-complete
argument in rok CLI.

See also Rok documentation.

The complete hook injects the KRAKE_COMPLETE_TOKEN environment variable, which stores the Krake authenti-
cation token, and the KRAKE_COMPLETE_URL environment variable, which stores the Krake complete hook URL
for a given application.

By default, this URL is the Krake API endpoint as specified in the Kubernetes Controller configuration. This
endpoint may be only internal and thus not accessible by an application that runs on a cluster. Thus, the
external_endpoint parameter can be leveraged. It specifies an endpoint of the Krake API, which can be ac-
cessed by the application. The endpoint is only overridden if the external_endpoint parameter is set.

Applications signal the job completion by calling the complete hook URL. The token is used for authentication and
should be sent in a PUT request body.

4.6.2 Shutdown

The application shutdown hook gives the ability to gracefully stop an application before a migration or deletion hap-
pens. This in turn allows to save data or bring other important processes to a safe conclusion.

The Krake Kubernetes controller calls the application shutdown hook before the deployment of the application on a
Kubernetes cluster. The hook is disabled by default. The user can enable this hook with the --hook-shutdown
argument in rok CLI.

See also Rok documentation.

The shutdown hook injects the KRAKE_SHUTDOWN_TOKEN and the KRAKE_SHUTDOWN_URL environment vari-
ables, which respectively store the Krake authentication token and the Krake shutdown hook URL for a given applica-
tion.

By default, this URL is the Krake API endpoint as specified in the Kubernetes Controller configuration. This
endpoint may be only internal and thus not accessible by an application that runs on a cluster. Thus, the
external_endpoint parameter can be leveraged. It specifies an endpoint of the Krake API, which can be ac-
cessed by the application. The endpoint is only overridden if the external_endpoint parameter is set.

If the application should be migrated or deleted, Krake calls the shutdown services URL, which is set via the manifest
file of the application. The integrated service gracefully shuts down the application, preferably via SIGTERM call, but
the exact implementation is up to the individual developer. After the shutdown process is complete, the service sends
a completion signal to the shutdown hook endpoint of the specific application on the Krake API. The previously set
token is used for authentication and should be sent in a PUT request body. This requirement prevents the malicious or
unintentional deletion of an application. The workflow of this process can be seen in the following figure:

The shutdown hook was developed especially to enable stateful applications. Since these services generate data or are
in specific states, it was difficult to migrate or even delete these applications without disrupting their workflow. The
shutdown hook enables these normal Krake features for these applications by allowing saving of the current state. But
be aware, that Krake doesn’t implement a specific graceful shutdown for these applications and merely gives them a
possibility to be informed about the intentions of Krake.

4.6.3 TLS

If TLS is enabled on the Krake API, both hooks need to be authenticated with some certificates signed directly or
indirectly by the Krake CA. For that purpose, the hooks inject a Kubernetes ConfigMap for different files and mounts
it in a volume:

4.6. Application hooks 87

Krake, Release 1.0.0

Fig. 3: Shutdown hook workflow in Krake

88 Chapter 4. Developer Documentation

Krake, Release 1.0.0

ca-bundle.pem It contains the CA certificate of Krake, and the hook certificate that was used to sign
the certificate specific to the Application.

cert.pem The certificate signed by the hook. It is generated automatically for each Application. Its
CN is set to the hooks user defined in the hook configuration, see Krake configuration.

key.pem The key of the certificate signed by the hook. It is generated automatically for each Applica-
tion.

The certificate added are signed by a specific certificate, defined by the intermediate_src field in the configura-
tion Kubernetes application controller. This certificate needs the following:

• able to sign other certificates;

• hold the right alternative names to accept the Krake endpoint.

The ConfigMap is mounted by default at: /etc/krake_ca/cert.pem in the Kubernetes Deployment resources
of the Applications.

The name of the environment variables and the directory where the ConfigMap is mounted are defined in the Kuber-
netes controller configuration file, see Krake configuration.

4.6.4 Examples

cURL

Example using cURL:

$ curl -X PUT -d "{\"token\":\"$KRAKE_COMPLETE_TOKEN\"}" $KRAKE_COMPLETE_URL

If TLS is enabled on the Krake API
$ curl -X PUT -d "{\"token\":\"$KRAKE_COMPLETE_TOKEN\"}" $KRAKE_COMPLETE_URL \

--cacert /etc/krake_cert/ca-bundle.pem \
--cert /etc/krake_cert/cert.pem \
--key /etc/krake_cert/key.pem

By running this command, the Krake API will compare the given token to the one in its database, and if they match,
will set the Application to be deleted.

The cURL above may not work with older versions of cURL. You should use versions >= 7.51, otherwise you would
get:

curl: (35) gnutls_handshake() failed: The TLS connection was non-properly terminated.

Python requests

Example using Python’s requests module:

If TLS is not enabled:

import requests
import os

endpoint = os.getenv("KRAKE_COMPLETE_URL")
token = os.getenv("KRAKE_COMPLETE_TOKEN")

requests.put(endpoint, json={"token": token})

4.6. Application hooks 89

Krake, Release 1.0.0

If TLS is enabled, using the default configuration for the certificate directory:

import requests
import os

ca_bundle = "/etc/krake_cert/ca-bundle.pem"
cert_path = "/etc/krake_cert/cert.pem"
key_path = "/etc/krake_cert/key.pem"
cert_and_key = (cert_path, key_path)
endpoint = os.getenv("KRAKE_COMPLETE_URL")
token = os.getenv("KRAKE_COMPLETE_TOKEN")

requests.put(endpoint, verify=ca_bundle, json={"token": token}, cert=cert_and_key)

4.7 Kubernetes Application Controller

4.7.1 Reconciliation loop

In the following section, we describe what happens in the Kubernetes Application controller when receiving a resource,
and highlight the role of the observer schema.

In this example, the user provides:

• Two resources (one Song and one Artist) that should be created. This is provided in spec.manifest.

• A custom observer schema for the Song. This is provided in spec.observer_schema

The first resource (Song) illustrates the use of a custom observer schema and demonstrates the behavior of list length
control. The second resource (Artist) highlights the generation of a default observer schema and the special case
of mangled resources.

Step 0 (Optional)

If the resource is defined by the TOSCA template file, an URL or a CSAR archive URL, the controller translates the
given TOSCA or CSAR file to the Kubernetes manifest file if possible, see TOSCA.

The result of translation is stored in spec.manifest.

This step is performed by the ApplicationToscaTranslation hook.

Step 1

First, the controller generates the default observer schema for resources, where none have been provided. In our
example, a default observer schema is created for the Artist, while the custom observer schema provided by the
user for the Song is used as-is.

The result is stored in status.mangled_observer_schema.

This step is performed by the generate_default_observer_schema function.

Step 2

In this step, the controller initializes - or updates if previously initialized - the status.
last_applied_manifest. This attribute represents the desired state (i.e. which values should be set for
which fields).

90 Chapter 4. Developer Documentation

Krake, Release 1.0.0

4.7. Kubernetes Application Controller 91

Krake, Release 1.0.0

If empty (i.e. during the first reconciliation of the resource), it is initialized as a copy of spec.manifest. The
status.last_applied_manifest might be augmented at a later step by non-initialized observed fields (see
Step 6). As a result, if this field has already been initialized (i.e. during later reconciliation), this step updates the
observed fields present in spec.manifest.

This the role of the update_last_applied_manifest_from_spec function.

In the example above, looking at the Song resource:

• key1 is initialized in spec.manifest and is observed.

• key2 is initialized in spec.manifest but is not observed. Its initial value is copied to the status.
last_applied_manifest, so that the Kubernetes resource can be created using this value. But as it’s
not observed, its value in status.last_applied_manifest will never be updated (see Step 6).

• key3 is observed but is not set in spec.manifest. Its value in status.last_applied_manifest is
initialized as part of the Step 6 (see below).

Step 3

When an application is mangled, for instance if the Complete Hook has been enabled for the application, some fields
or resources are added to status.last_applied_manifest. They should also be observed, so there are added
to status.mangled_observer_schema.

This steps is performed in the mangle_app method of the Complete class.

In the example above, the Artist resource is mangled. The key spec.nickname is added to both spec.
last_applied_manifest and mangled_observer_schema.

Step 4

The controller compares the desired state (status.last_applied_manifest) and the current state (repre-
sented in status.last_observed_manifest). It creates a set of new, updated and deleted resource, to
be used in the next step: - new resources are present in the desired state but not in

the current state; they need to be created on the cluster.

• updated resources have a different definition in the desired and in the current state; they need to be updated
on the cluster.

• deleted resources are not in the desired state anymore, but are in the current state; they need to be deleted
from the cluster.

During the first reconciliation of the application, the current state is empty. All resources present in the desired state
needs to be created.

This steps occurs in ResourceDelta.calculate() function.

Note: In order to calculate the “diff” between the desired state and the current state of a resource, the controller: -
compares the value of the observed fields only. By definition, the

controller should not act if a non-observed fields value changes.

• checks if the lengths of lists are valid using the list control dictionary.

92 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Step 5

The controller acts on the result of the comparison by either creating, patching, or deleting resources on the cluster. In
particular:

• A resource is created using the whole status.last_applied_manifest. This ensures that all initialized
fields (set by the user in spec.manifest), are set on the selected cluster, regardless of whether they are
observed. In the example above, this is especially the case for key2 in the Song.

• Only the observed fields of a resource are used in order to patch that resource.

In other words, the non-observed initialized fields (i.e. set by the user in spec.manifest, however not in spec.
observer_schema): - are used for the creation of the resource. - are not used for patching the resource.

This reflects the fact that if a non-observed fields value changes on the Kubernetes cluster, this update should not be
reverted by the Kubernetes Application controller, while providing the user with the ability to set the initial value of a
non-observed field.

Step 6

Using the Kubernetes response, the status.last_applied_manifest is updated. It is augmented with ob-
served fields which value was not yet known.

In the example above, this is the case of key3 in the Song. It is observed (present in spec.observer_schema)
but not initialized (not present in spec.manifest). Its value in status.last_applied_manifest couldn’t
be initialized during Step 2. Its value is initialized using the Kubernetes response.

This mechanism provides the user with the ability to request a specific field to remain constant, while not providing
an initial value for it. It uses the value set initially by the Kubernetes cluster on resource creation.

This task is performed by the hook update_last_applied_manifest_from_resp.

Note: Only the observed which are not yet known are added to status.last_applied_manifest.

In the unlikely event where a field, which value is already known, has a different value in the Kubernetes re-
sponse (for instance if key1 would have a different value in the Kubernetes response), this value is not updated in
status.last_applied_manifest. The user’s input prevails in the definition of the desired state, represented
by status.last_applied_manifest.

Note: The rythms list possess two elements in the Kubernetes API response. As only the first element is observed,
the value of the second element is not saved in status.last_applied_manifest.

Step 7

Similarly, the status.last_observed_manifest also needs to be updated in order to reflect the current state.
It holds all observed fields which are present in the Kubernetes response.

This task is performed by the hook update_last_observed_manifest_from_resp.

4.7. Kubernetes Application Controller 93

Krake, Release 1.0.0

4.8 Kubernetes Application Observer

Krake employs self-healing processes on its resources while running. A reconciliation is done on each resource whose
status deviates from its specifications. This can happen if a resource has been modified manually, attacked, or if any
anomaly occurred on the actual resource that the Krake resource describes.

4.8.1 Reconciliation

Overview

The reconciliation is the act of bringing the current state of a resource to its desired state. During the course of its
life, the real-life pendant of a Krake resource may be updated, and thus differ from the desired state (user-defined).
To correct this, Krake performs a reconciliation, and the actual state is “replaced” by the desired state. The Krake
Controllers are responsible for actually doing the reconciliation over the resources they manage.

The reconciliation is based on two fields of a resource data structure:

spec The specifications of a resource are stored in this attribute. It corresponds to the desired state of this resource.

It has the following properties:

• set and/or updated by the user;

• should not be modified by the Krake controllers, but nothing restricts it (should be limited using RBAC,
see Security principles).

status The current status of the resource as seen in the real-world are stored in this attribute.

It has the following properties:

• should not be modified by the user, but nothing restricts it (should be limited using RBAC, see Security
principles);

• set and/or updated by the Krake controllers.

Important: Resources must have a spec AND a status attribute to be reconciled.

Reconciliation loop

The actual reconciliation is done infinitely, during the so-called reconciliation loop. This loop is not necessarily an
in-code loop, and can be more of a conceptual loop between different components.

This workflow in Krake for a specific resource is presented on the following figure:

The workflow is as follows:

1. The resource is created on the API;

2. The actual resource is created by the Controller in the real-world;

3. The Controller responsible for this resources watches, or observes its current state in the real-world. This is the
role of the Observer;

4. This current state is compared to the status, stored internally on the Observer;

5. If the actual state is the same as the status of the resource, as stored in the Observer, nothing happens. This
workflow is started again from step 3 onwards after a defined time period;

94 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Fig. 4: Reconciliation loop in Krake

4.8. Kubernetes Application Observer 95

Krake, Release 1.0.0

6. If the actual state is different from the status of the resource, it means that the actual resource was modified
in the real-world;

7. The Observer notifies the API, by updating the status field of the resource;

8. The Controller receives the up-to-date version of the resource, and performs the reconciliation, by applying the
desired state on the actual resource;

9. The workflow starts again from step 3.

Warning: For the moment, Krake only implements reconciliation loop for the Krake Application resources
of the Kubernetes API.

4.8.2 Kubernetes Application Observer

The Krake applications of the Kubernetes API have a dedicated KubernetesApplicationObserver. For each ap-
plication which has some actual resources on a cluster, an observer is created. This KubernetesApplicationObserver
watches the status of all Kubernetes resources present in the application specification.

For instance, the nginx application has a Kubernetes Deployment and a Service. If a user changes the image
version of the container in the Deployment or a label in the Service, this will be detected by the Kubernetes
application Observer. It will update the status of the application and the Kubernetes Controller will observe a
deviation with the spec and update the actual Deployment and Service accordingly.

The list of fields which are observed by the Kubernetes application observer can be controlled by specifying a Custom
Observer Schema.

This observer schema uses the two fields last_applied_manifest and last_observed_manifest, both
of which can be found in app.status. last_applied_manifest contains the information about the latest
applied data, which the application should currently be running on. last_observed_manifest on the other
hand contains information about the latest observed manifest state of this application. By comparing both datasets,
the differences between the desired and observed status can be determined and the corresponding parts can be created,
updated or deleted.

The actual workflow of the Kubernetes Application Observer is as follow:

Summary

Creation

After an Application’s resources are created, a Kubernetes Application Observer is also created for this specific
Application.

Update

Before the Kubernetes resources defined in an Application are updated, its corresponding Kubernetes Application
Observer is stopped. After the update has been performed, a new observer is started, which observes the newest
status of the Application (the actual Kubernetes resources).

96 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Fig. 5: Sequence diagram of the Kubernetes Application Observer lifecycle

4.8. Kubernetes Application Observer 97

Krake, Release 1.0.0

Deletion

Before the Kubernetes resources of an Application are deleted, its corresponding KubernetesApplicationObserver is
stopped.

Actions on the API side (summary)

Action Observer stopped before Observer started after
Create No Yes
Update Yes Yes
Delete Yes No

On status change

The KubernetesApplicationObserver periodically checks the current state of its Application. The status is read and
compared to the status field of the Application.

If a Kubernetes resource of the Application changed on its cluster, the KubernetesApplicationObserver sends an update
request to the API, to change its status field. This field is updated to match what the Observer fetched from the
cluster.

Then the Kubernetes Controller starts processing the update normally: a discrepancy is found between the desired state
(spec) and the current one (status). Thus the controller reacts and bring back the current state to match the desired
one, by reconciliation. As an update is performed, the observer is stopped before and started after this reconciliation.

After the reconciliation, the status field of the Application follows now the desired state. The Kubernetes Applica-
tion Observer observes this state to check for any divergence.

Warning: If another resource is added manually (not through Krake) to a cluster managed by Krake, Krake will
not be aware of it, and no management of this resource will be performed: no migration, self-healing, updates, etc.

4.9 Kubernetes Cluster Controller

The Kubernetes Cluster Controller manages and monitors Kubernetes clusters registered in Krake or created by Krake.
To do this for each Kubernetes cluster registered or created by Krake, an observer is created. This observer directly
calls the Kubernetes API of the specific cluster and checks on its current state. The Kubernetes cluster controller then
updates the internally stored state of the registered or created Kubernetes cluster according to the response from the
Kubernetes cluster observer.

The Kubernetes Cluster Controller is launched separately.

Note: Since this is a relatively new implementation, the Kubernetes Cluster Controller will certainly be extended by
additional features and functionalities in the future.

For more information on what the Kubernetes Cluster Observer does and what features it offers, see Kubernetes Cluster
Observer.

For more information about the actual Kubernetes cluster creation by Krake please see Infrastructure Controller or
visit related user story Infrastructure providers.

98 Chapter 4. Developer Documentation

Krake, Release 1.0.0

4.10 Kubernetes Cluster Observer

Krake constantly observes the status of its registered or created clusters while running. For each cluster a separate
Kubernetes cluster observer is created. This cluster specific observer calls the Kubernetes API of the real world
Kubernetes Cluster periodically. The current status of each cluster is saved in the database of Krake. If a status change
of the real world Kubernetes Cluster is detected, Krake updates the saved state of the registered Kubernetes cluster
which is stored in its database. Changes in the state of a cluster may be related to Krake being able to connect to the
real Kubernetes cluster or not, an unhealthy real world Kubernetes cluster, or metrics providers failing.

4.10.1 Kubernetes Cluster Status Polling

Overview

The polling is the act of calling the Kubernetes API of the real world Kubernetes cluster to get its state. During
the course of its life, the real-life pendant of a Krake resource may be updated, and thus differ from the desired state
(user-defined). To correct this, Krake performs a reconciliation, and the actual state is “replaced” by the desired state.
The Krake Controllers are responsible for actually doing the reconciliation over the resources they manage.

Polling

The actual polling is done infinitely, during the so-called polling loop.

This workflow in Krake for a specific resource is presented on the following figure:

The workflow is as follows:

1. The actual real-world cluster is registered or created by Krake;

2. The Kubernetes cluster controller watches, or observes the clusters current status in the real-world. This is
the role of the KubernetesClusterObserver. This is done by polling the status with a call on the Kubernetes
cluster API.

3. This current state is compared to the status, stored internally on the Observer;

4. If the actual state is the same as the status of the resource, as stored in the Observer, nothing happens. This
workflow is started again from step 3 onwards after a defined time period;

5. If the actual state is different from the status of the resource, it means that the actual cluster was modified in
the real-world;

6. The Observer notifies the Krake API, by updating the status field of the cluster;

7. The workflow starts again from step 3.

4.10.2 States

A Kubernetes cluster watched by it’s corresponding KubernetesClusterObserver can have the following observer re-
lated states:

• PENDING

• CONNECTING

• ONLINE

• DEGRADED

• OFFLINE

4.10. Kubernetes Cluster Observer 99

Krake, Release 1.0.0

Fig. 6: KubernetesClusterObserver polling loop

100 Chapter 4. Developer Documentation

Krake, Release 1.0.0

• UNHEALTHY

• NOTREADY

• FAILING_METRICS

Note: Refer to the States for the infrastructure related cluster states.

PENDING This state is initially set when a Kubernetes cluster is registered in Krake.

CONNECTING It is set by the Kubernetes Cluster Observer if the previous state of a cluster was OFFLINE, but the
real cluster is available again. In this case, a reconnection is attempted with a temporary CONNECTING state.

ONLINE If the cluster is reachable in the real world, is in a healthy state and is ready, the status of the cluster in Krake
will be ONLINE.

DEGRADED A cluster will be DEGRADED if the handling of the cluster was not successful, but the number of retries
is not yet exhausted. This is the intermediate state before being OFFLINE (or back ONLINE). The behaviour is
specified with the parameters backoff (multiplier added to retry attempts, defaults to 1), backoff_delay
(number of seconds between retry attempts) and backoff_limit (number of retries, defaults to -1(infinite)).
So if not changed, the cluster will remain in DEGRADED state until the handling was successful. Otherwise, if
the number of retries is exhausted, the cluster will transfer to OFFLINE.

OFFLINE If the real world cluster cannot be reached by polling the Kubernetes cluster API, the status of the cluster
in Krake will be OFFLINE. This can happen due to several reasons, e.g. the Kubernetes cluster itself is down,
network connectivity issues or incorrect configuration of the used kubeconfig file to register the cluster in Krake.

UNHEALTHY This state is set for clusters in Krake when the Kubernetes API call responds with either PIDPressure,
DiskPressure, or MemoryPressure.

NOTREADY This status is displayed when there is an internal problem in the real Kubernetes cluster. When this status
is displayed, an investigation of the Kubernetes cluster itself is highly recommended. The reasons for this status
vary, for example, the real Kubernetes cluster’s kubelet is not working properly or other services have failed to
start.

FAILING_METRICS This status is set internally by Krake if a metrics provider is not reachable by Krake and thus
metrics cannot be passed correctly into Krake.

4.10.3 Node Health

The cluster observer collects health data of a kubernetes cluster and formats it. Data is divided according to the nodes of
the cluster and the different pressure types PID, memory and disk. They represent the problems that a kubernetes node
could experience, either missing process ids due to too many process instances, memory overload or non-available
disk space. These information can be found by calling:

$ rok kube cluster get X
+-----------------------+---------------------+
...	...
nodes	3/3
nodes_pid_pressure	0/3
nodes_memory_pressure	0/3
nodes_disk_pressure	0/3
...	...
+-----------------------+---------------------+

Nodes are shown according to their health, so 3/3 if all nodes are healthy, and the pressure parameters only get filled,
if there is a current problem with one (or more) of the nodes.

4.10. Kubernetes Cluster Observer 101

Krake, Release 1.0.0

Summary

Creation

After a Cluster resource was registered or successfully created, a KubernetesClusterObserver is also created for this
specific cluster.

Update

Before the Kubernetes cluster in Krake is updated, its corresponding KubernetesClusterObserver is stopped. After
the update has been performed, a new observer is started, which observes the newest status of the cluster (the actual
Kubernetes cluster).

Deletion

Before the Kubernetes cluster is deleted, its corresponding KubernetesClusterObserver is stopped.

Actions on the API side (summary)

Action Observer stopped before Observer started after
Create No Yes
Update Yes Yes
Delete Yes No

On status change

The KubernetesClusterObserver periodically checks the current state of its cluster. The status is read and compared to
the status field of the cluster.

If a Kubernetes cluster changed, the KubernetesClusterObserver sends an update request to the API, to change its
status field. This field is updated to match what the Observer fetched from the cluster.

Then the Kubernetes Cluster Controller starts processing the update normally.

Warning: Currently only Kubernetes clusters which have been registered in Krake or created by Krake can
be observed.

4.11 Infrastructure Controller

This part of the documentation presents the Infrastructure Controller control plane component, and how the life-cycle
management of real-world Kubernetes clusters is handled.

The Infrastructure Controller should process Clusters that are bound (scheduled) to any Cloud or GlobalCloud re-
source. It should also process Clusters that were deleted and contain an Infrastructure Controller specific deletion
finalizer: infrastructure_resources_deletion.

102 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Note: Refer to the Cluster handler for useful information about cluster scheduling process.

Bound GlobalCloud or Cloud resources correspond to an IaaS cloud deployment (e.g. OpenStack, AWS, etc.) that
will be managed by the infrastructure provider backend. Krake currently supports only OpenStack as a GlobalCloud
or Cloud backend.

The GlobalCloud or Cloud resource should contain a reference to the GlobalInfrastructureProvider or Infrastructure-
Provider resource that corresponds to an infrastructure provider backend, that is able to deploy infrastructures (e.g.
Virtual machines, Kubernetes clusters, etc.) on IaaS cloud deployments. Krake currently supports only IM (Infras-
tructure Manager) as an infrastructure provider backend.

Note: The global resource (e.g. GlobalInfrastructureProvider, GlobalCloud) is a non-namespaced resource that could
be used by any (even namespaced) Krake resource. For example, the GlobalCloud resource could be used by any
Cluster which needs to be scheduled to some cloud.

4.11.1 Reconciliation loop

In the following section, we describe what happens in the Infrastructure Controller when receiving a Cluster resource.

Step 1

Infrastructure Controller handles Cluster resources that have been deleted and contain the infrastruc-
ture_resources_deletion (1). If the above is true, the controller requests the cloud’s infrastructure provider for the
deletion of the actual cluster counterparts (1a). The controller waits in an infinite loop for the actual cluster deletion
(1b). Finally, the controller removes the finalizer from the Cluster resource (1c). This allows the garbage collector
controller to remove the Cluster resource from the Krake DB.

Step 2

The Infrastructure Controller handles Cluster resources that are bound (scheduled) to any Cloud or GlobalCloud re-
source (2). The Cloud or GlobalCloud resource contains cloud API endpoints and access credentials as well as a
reference to the infrastructure provider resource through which Krake can manage actual Kubernetes clusters on the
bounded cloud.

Step 3

If the Cluster is bound (scheduled) to some cloud, the controller recursively looks for all the changes between the
desired state (which is represented by the cluster.spec.tosca field) and the current state (which is stored in the
cluster.status.last_applied_tosca field) (3).

Step 4

If there is a difference between the desired and the current state, the controller checks the resource field cluster.
status.running_on (4).

If it is empty, the resource is considered new, and the controller requests the cloud’s infrastructure provider for the
creation of the actual cluster counterparts (4a). The TOSCA template stored in cluster.spec.tosca repre-
sents the desired state and it is applied here. After a successful request for creation, the cluster.status.
last_applied_tosca field is updated with the copy of the cluster.spec.tosca field as well as the

4.11. Infrastructure Controller 103

https://www.openstack.org/
https://github.com/grycap/im

Krake, Release 1.0.0

104 Chapter 4. Developer Documentation

Krake, Release 1.0.0

cluster.status.running_on is updated with the copy of the cluster.status.scheduled_to field
(scheduled_to field contains the bound cloud resource reference).

If the cluster.status.running_on field is not empty, the controller requests the cloud’s infrastructure
provider for the reconciliation (update) of the actual cluster counterparts (4b). The TOSCA template stored in
cluster.spec.tosca represents the desired state and it is applied here. After a successful request for reconcil-
iation, the cluster.status.last_applied_tosca field is updated with the copy of the cluster.spec.
tosca field.

Then, the controller waits for the cluster is being successfully configured in the infinite loop (7).

Step 5

If the desired and the current state are in sync, the controller checks whether the Cluster resource state is
FAILING_RECONCILIATION (5). If so, the controller requests the cloud’s infrastructure provider for the recon-
figuration of the actual cluster counterparts (5a). This is a “special” call that may or may not be required in case
of infrastructure provider failures (e.g. restart). It depends on the underlying infrastructure provider implementation
which action should be performed under the hood of the abstract infrastructure controller function reconfigure.

Then, the controller waits for the cluster is being successfully configured in the infinite loop (7).

Step 6

The controller finishes the reconciliation if the Cluster resource state is ONLINE or CONNECTING (6). If it is not the
case, the controller waits for the cluster is being successfully configured in the infinite loop (7).

Step 7

The controller waits in an infinite loop for the actual cluster creation/reconciliation/(re)configuration (7). When the
actual cluster is fully configured, the controller updates the Cluster state to CONNECTING and also saves its kubeconfig
manifest to the cluster.spec.kubeconfig field. Finally, the controller finishes the reconciliation.

Note: Once the Cluster is configured, has CONNECTING state, and contains kubeconfig manifest, the Kubernetes
Cluster Controller takes over the Cluster and Kubernetes Cluster Observer observes its actual status.

4.11.2 States

A Kubernetes Cluster resource managed by the Infrastructure Controller can have the following infrastructure related
states:

• PENDING

• CONNECTING

• CREATING

• RECONCILING

• DELETING

• FAILING_RECONCILIATION

• FAILED

4.11. Infrastructure Controller 105

Krake, Release 1.0.0

Note: Refer to the States for the observer related cluster states.

PENDING This state is initially set when a Kubernetes cluster resource is created in Krake.

CONNECTING It is set when the actual Kubernetes cluster has been successfully reconciled.

CREATING It is set when the actual Kubernetes cluster is going to be created.

RECONCILING It is set when the actual Kubernetes cluster is going to be updated.

DELETING It is set when the actual Kubernetes cluster is going to be deleted.

FAILING_RECONCILIATION It is set when the reconciliation process of the actual Kubernetes cluster failed.

FAILED It is set on the global Infrastructure Controller level when an exceptions is raised during the reconciliation
process.

Note: Since this is a relatively new implementation, the Infrastructure Controller will certainly be extended by
additional features and functionalities in the future, e.g. Infrastructure Observer.

4.12 Garbage Collection

This part of the documentation presents the Garbage Collector component, and how the deletion of resources that
others depends on is handled.

4.12.1 Dependency mechanism

In Krake, any resource can depend on any other. In this case, we say the dependent depends on the dependency.
For instance, a Kubernetes Application depends on a Cluster. We also say that the Cluster owns the Application. The
Cluster is one of the owners of the Application in this case.

Every resource with metadata holds a list of its owners. However, no resource holds the list of its owned resources.
This is similar to the principle of relational database for instance, with the foreign key mechanism.

In the preceding diagram, a my-app Application is owned by a cluster (see its list of owners) itself belonging to a
Magnum cluster. The latter is finally owned by an OpenStack project. The project has no dependency, thus its owner
list is empty.

4.12.2 Overview

The Garbage Collector is a Controller of Krake and is, as such, to be started independently from the other components
of Krake.

“Marked as deleted” vs “to delete” vs “deleted”

The resources processed during garbage collection have three different states. They use the "cascade_deletion"
finalizer.

“Marked as deleted” A resource is marked as deleted by the API, when the “delete” action is called on this resource.
It means two things for the resource object:

• the deleted timestamp of the metadata is set to the current time;

106 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Fig. 7: Dependency relationships in Krake with examples.

4.12. Garbage Collection 107

Krake, Release 1.0.0

• the "cascade_deletion" finalizer is added to its list of finalizer.

A resource marked for deletion enters then the garbage collection process.

Caution: This state is irreversible. A resource that enters this state will be processed by the garbage
collector, only to be deleted in the end of garbage collection process.

“To delete” A resource is said to be in the “to delete” state if two conditions are met :

• its deleted timestamp is set;

• it has no finalizer.

Such a resource can still be transferred by the components. If a resource in this state is received by the API on
update, it is deleted.

“Deleted” A deleted resource is completely removed from the database. A last “DELETED” event can be watched on
the API when the actual deletion occurs to act on the deletion but the resource itself must be considered erased,
and not managed by the API anymore.

Role of the Garbage Collector

The role of the Garbage Collector is to handle resources marked as deleted by the API, but not yet deleted.

When a resource is received, the garbage collector has to:

• update its dependency graph (see Dependency graph);

• get the resources that directly depend on it;

• call the API with the “delete” action to let it mark the dependents as deleted;

• if a resource has no dependent, remove the "cascade_deletion" finalizer from it, and call the API to
update the resource. The resource enters the “to delete” state.

So the role of the Garbage Collector is mostly to get the dependents of a resource, and update them to mark them as
deleted. This information is taken from the dependency graph present on the garbage collector, see the Dependency
graph section.

Role of the API

For the deletion of resources, the garbage collector works tightly with the API, as the garbage collector has no direct
access to any resource on the database.

The API is then responsible for:

• actually marking the requested resources as deleted;

• completely deleting a resource from the database during an update, if the resource is in a “to delete” state.

So the API is the one that actually modifies and process the stored resources.

4.12.3 Garbage collection workflow

The exact workflow of a resource that the user wants to delete is presented on the previous diagram. Let us take for
example an Application A, with a cluster C as single owner.

1. A and C were created beforehand, thus they are already present in the dependency graph of the garbage collector;

108 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Fig. 8: Garbage collection workflow, and communication between the garbage collector and the API

4.12. Garbage Collection 109

Krake, Release 1.0.0

2. the user requests the deletion of the Cluster C, for instance with the Rok utility or using curl;

3. the request is received by the API. The API marks the cluster C as deleted, and an UPDATE event is triggered;

4. the garbage collector receives the event. It accepts to handle the cluster, as it is marked for deletion;

5. the list of dependents of C is fetched from the dependency graph stored on the garbage collector. The garbage
collector issues for each of them a “delete” call to the API. In our case, the Application A is the only dependent
of C;

6. the API receives the call and marks A as deleted. A is updated, and an UPDATE event is triggered;

7. the garbage collector receives the event, and accepts to handle A;

8. A has no dependent, so its "cascade_deletion" finalizer is removed. An “update” request is sent to the
API with the new A;

9. the API receives the “update” request, with A being in the “to delete” state. A is deleted from the database. A
DELETED event is triggered;

10. the garbage collector receives the event. A is removed from the dependency graph. The dependencies of A are
put in the worker queue of the garbage collector to be handled. The owners are collected from the dependency
graph. In our case, C is added to the worker queue;

11. C is handled by the garbage collector a second time. It has no dependent this time, as A has been deleted
and removed from the dependency graph. Thus, the garbage collector removes the "cascade_deletion"
finalizer and issues an “update” call to the API for C;

12. the API receives the “update” request, with C being in the “to delete” state. C is deleted from the database. A
DELETED event is triggered. C had no dependency, so the garbage collector does not take any action.

4.12.4 Dependency graph

Description and goal

The dependency graph is an acyclic directed graph stored on the garbage collector as “cache”. Its goal is to store
the dependency relationships of all resources managed by the API. The graph is updated when starting the garbage
collector, while listing resources, or on events triggered by the API. It is only stored in memory, and is re-created each
time the garbage collector is started.

The dependency graph allows the garbage collector to access the dependents of any resource. Otherwise, to get the
dependents of a resource, the garbage collector would need to request all resources on the database, and check which
one of them have the resource to delete as owner. This would mean of course that all resources of the database would
be looped through. This is definitely not optimal and is avoided with the dependency graph.

On the nodes, the graph stores the krake.data.core.ResourceRef object corresponding to a resource. The
edges are directed link from a ResourceRef object, to the dependencies of the original object.

krake.data.core.ResourceRef objects are used because they can be keys in dictionaries, whereas normal
resources cannot. The reference to the complete resources is still stored in the graph.

Graph workflow

Five actions can be performed on the dependency graph: adding, updating or removing a resource, get the dependents
of a resource, or get its dependencies.

Adding a resource: Action performed when the garbage collector lists the resources on startup, or when an
“ADDED” event is triggered. The resource is added to the graph as node, along with its dependency relations
as edges;

110 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Fig. 9: Comparison example of the dependencies, as represented in the API and on the dependency graph.

4.12. Garbage Collection 111

Krake, Release 1.0.0

Fig. 10: Dependency graph workflow on the garbage collector

112 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Updating a resource: Action performed when an “UPDATED” event is triggered. If the resource dependency rela-
tions were modified, the graph edges are modified. The node corresponding to the resource is modified.

Removing a resource: Action performed when a “DELETED” event is triggered. The resource’s corresponding node
is removed from the graph, along with the edges bound to it.

Get the dependents of a resource: Action performed by the garbage collector, to know which resource to mark for
deletion, without having to reach the API. The nodes on the edges of the resource are listed and returned.

Get the dependencies of a resource: Action performed by the garbage collector, to put the owners of a resource in
the worker queue. The owners stored on the resource are returned.

4.13 API Generation

This part of the documentation describes the API generator utility.

4.13.1 Role

The API generator was developed to automatically create the code for:

• the Krake API;

• the client for the Krake API;

• the unit tests for the Krake API;

• the unit tests for the client of the Krake API;

• the API definitions, which are the bases for the generation of the elements above.

Note: Other cases will be added, as the generator was built to be modular.

The Krake API is separated into the different APIs that are managed: core, kubernetes, openstack, and
infrastructure. Each one of them handles the classic CRUD operations on the different resources managed by
the APIs. Having all their code written by hand would not really follow the DRY principle. Previously, the handlers
and the client methods were generated dynamically when starting the API. This lead to the code of the API and the
client being not very flexible, but mostly, being harder to debug.

As a compromise, the API generator was introduced. It generates the code for any resource of any API in a determin-
istic way. The code for the API, the client and their respective unit tests are thus more or less “harcoded”, as they are
not generated on the fly. This has several advantages:

• the code can be easily read, understood, and is accessible easily for debuggers and linters;

• the generation can be nicely integrated with versioning. For instance, when generating new resources or when
updating the template of the handlers, the changes can be propagated easily. One only needs to rerun the
generator and check the differences.

The API generator should be leveraged in the following cases:

• a new operation on an existing resource is inserted (like the binding for the Application resource, or the
update of a subresource);

• a new resource is added to an API. All operations to manage it should be handled;

• a whole new API is added. All resources should be managed as well;

4.13. API Generation 113

Krake, Release 1.0.0

4.13.2 Usage

The API generator is a Python module not integrated into the Krake main code. It is present in the Krake repository
on api_generator/.

Requirements

To install the required packages in your local environment, you can use:

$ pip install "krake/[api_generator]"

Krake needs to be installed on your local environment as well to be able to use the generator. The previous command
also installs Krake.

Commands

The base command for the generator is the following:

$ python -m api_generator <command> <parameters>

The <command> part sets the type of generator which will be used, e.g. the Krake API code, or unit tests for the
client. The <parameters> are the specific arguments for the chosen generator.

Warning: You need to be in the Krake root directory to use the command.

The command above will display the generated result. To store it into a file, simply redirect the result:

$ python -m api_generator <command> <parameters> > <generated_file>

4.13.3 Templating

The generated content is based on Jinja templates stored in api_generator/templates, but the path can be
overwritten, see Common arguments. Modifying the templates will modify the generated code, and additional tem-
plates can be added for additional operations, unit tests, handlers, etc.

4.13.4 Generated elements

API definitions

The API definitions describe the different operations which can be executed on a type of resource in a specific API.
For instance, it would express that the resource Bar of API foo can be read or listed, but not created, updated or
deleted. Additional operations can also be added, for example for bindings, hooks, etc.

To create these definitions automatically, the generation is based on classes defined in the Krake data module. The
module inside krake.data is imported by the generator, which goes through the module, and filters the classes
which will be persistently stored in the database. These classes are considered as being handled by the Krake API, and
the operations will only be generated for them.

For each resource (the class handled), the following elements are generated:

• a Resource class;

• the singular and plural word for the resource;

114 Chapter 4. Developer Documentation

Krake, Release 1.0.0

• the scope of the resource (namespaced or not);

• basic CRUD operations, plus List and ListAll (from all namespaces);

• subresource classes inside the Resource class for each subresource of the data class (specified by the
"subresource" metadata of a field being set to True.);

• for each subresource, the Update operation is generated.

For each operation, the generated definition also describes:

• the HTTP method for the operation;

• the URL path for the operation’s endpoint;

• the name of the data class to use for the body of the request to the endpoint;

• the name of the data class that will be used for the body of the response of the Krake API.

For example:

$ python -m api_generator api_definition krake.data.kubernetes

will generate an API definition file which describes all the resources in the kubernetes API of Krake. Among
many other elements, a Status subresource is added for he Application resource.

Regarding the scope, each resource can be either namespaced or non-namespaced. To handle non-namespaced re-
sources, no namespaced should be provided for the API endpoint when calling them. Further, the List operation
can list all of the elements of the resource, and there is no ListAll operation to list all resources of all namespaces
(because the instance of the resources are not separated by namespaces).

To specify the scope, use the --scopes <krake_class_name>=<scope> argument, once for each resource.
For example, for the foo API, with resource Bar namespaced and Baz non-namespaced, the command should be:

$ python -m api_generator api_definition krake.data.foo --scopes Baz=NONE

After the generation, operations or the attributes of the operation can be changed to restrict or add new operations,
change the body of the request or the response, add other subresources, etc.

The existing definitions are stored in the api_generator/apidefs directory.

API/client code generation and their unit tests

The generation for the following elements all follow the same procedure:

• code for the Krake API;

• code for the client of the Krake API;

• the unit tests for the Krake API;

• the unit tests for the client of the Krake API.

The four generators leverage the API definitions as input. By giving the generator the path to a definition, it will be
able to import it and get information from the resources, subresources and their respective operations. This will, in
turn, be leveraged for the generation of the code.

$ python -m api_generator <command> api_generator.apidefs.foo

where the parameter (here api_generator.apidefs.foo) is the module path to the API definition used as
input, and <command> can be:

api_client:

4.13. API Generation 115

Krake, Release 1.0.0

The generated output will be code to communicate with the API. For each API, a client class is created,
which has a method for each defined operation. These methods take usually a resource as parameter and
maybe the name and namespace of a resource. It returns usually the body of the response of the Krake
API.

api_server:

The generated output will be handlers for the Krake API, to be executed when a request is received. For
each operation of each resource, a handler is generated to process the request and prepare the body of the
response sent to the client.

test_client:

The generated output will be unit tests. They verify the behavior of the client methods generated by the
api_client command. For each method of the client, several unit tests can be added because of the
different behaviors it can have.

test_server:

The generated output will be unit tests. They verify the behavior of the handlers generated by the
api_server command. For each handlers of the API, several unit tests can be added because of the
different behaviors it can have.

All these generators share the following common arguments:

• --operation

• --resources

They can be used to limit respectively the operations and/or the resource that will be handled by the generator for the
final output. Can be repeated once for each operation for which the output will be displayed. If one of the option is
used, it will only display the mentioned operation or resource. Not using one of them will result in all operations or
resources being outputted.

Common arguments

These arguments are common to some generators:

--no-black:

to disable the usage of black on the output of the generator before returning it.

--templates-dir

to overwrite the templates used for the generation of the code or definitions.

4.14 TOSCA

This section describes TOSCA integration to Krake.

4.14.1 Introduction

TOSCA is an OASIS standard language to describe a topology of cloud-based web services, their components, rela-
tionships, and the processes that manage them.

TOSCA uses the concept of service templates to describe services. TOSCA further provides a system of types to
describe the possible building blocks for constructing service templates and relationship types to describe possible
kinds of relations. It is possible to create custom TOSCA types for building custom TOSCA templates.

116 Chapter 4. Developer Documentation

https://github.com/psf/black
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca

Krake, Release 1.0.0

Krake allows end-users to orchestrate Kubernetes applications with TOSCA. It is required to use custom TOSCA
templates for them. Krake supports Cloud Service Archive (CSAR) files as well. CSAR is a container file using the
ZIP file format, that includes all artifacts required to manage the lifecycle of the corresponding cloud application using
the TOSCA language.

Note: The TOSCA technical committee has decided that any profile (template base) development should be left to
the community. It means, that there are not any “de facto standard” on how to describe e.g. Kubernetes applications
with TOSCA. Each orchestrator that supports TOSCA is its own product with its own design paradigms and may have
different assumptions and requirements for modeling applications.

4.14.2 TOSCA Template

Krake is able to manage Kubernetes applications that are described by the TOSCA YAML custom template file.
Kubernetes application should be described by TOSCA-Simple-Profile-YAML v1.0 or v1.2 as Krake only supports
those versions.

Krake supports Cloud Service Archives (CSAR) as well. The CSAR should contain TOSCA-Simple-Profile-YAML
v1.0 or v1.2 and should be in defined format.

Note: Krake uses the tosca-parser library as its underlying TOSCA parser and validator. Currently, tosca-parser
supports the TOSCA-Simple-Profile-YAML v1.0 or v1.2, which reflects what is supported by Krake.

Note: The Krake API could process TOSCA templates in two formats. It can receive the TOSCA template as
serialized JSON or the API could receive a URL that points to some remote location, that provides a TOSCA template.
In the case of providing a URL, the underlying tosca-parser library is able to (synchronously) download the TOSCA
template from the defined URL and then parse and validate it.

Another prerequisite (besides the TOSCA version) is a TOSCA profile (custom type). Krake supports and can manage
only Kubernetes application that is described by the tosca.nodes.indigo.KubernetesObject custom type.

The tosca.nodes.indigo.KubernetesObject custom type has been defined by the Grycap research group.
It could be imported as an external document using the imports directive in the template or it can be directly declared
as a custom data type within the data_types template section.

For import use the following reference to Grycap’s custom types:

imports:
- ec3_custom_types: https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_
→˓types.yaml

For direct definition use the following (minimal) data type:

data_types:
tosca.nodes.indigo.KubernetesObject:
derived_from: tosca.nodes.Root
properties:

spec:
type: string
description: The YAML description of the K8s object
required: true

4.14. TOSCA 117

https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx
https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html#_Toc528072959
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html#_Toc528072959
https://github.com/openstack/tosca-parser
https://github.com/openstack/tosca-parser
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/
https://github.com/openstack/tosca-parser
https://github.com/grycap
https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_types.yaml

Krake, Release 1.0.0

The spec of tosca.nodes.indigo.KubernetesObject custom type should contain Kubernetes manifest
as a string. It is possible to applied subset of supported TOSCA functions like:

• get_property

• get_input

The spec of the tosca.nodes.indigo.KubernetesObject custom type should contain a Kubernetes man-
ifest as a string. It is possible to apply a subset of supported TOSCA functions like:

• get_property

• get_input

• concat

Then, the example of TOSCA template for a single Kubernetes Pod could be designed as follows:

tosca_definitions_version: tosca_simple_yaml_1_0

imports:
- ec3_custom_types: https://raw.githubusercontent.com/grycap/ec3/tosca/tosca/custom_

→˓types.yaml

description: TOSCA template for launching an example Pod by Krake

topology_template:
inputs:
container_port:

type: integer
description: Container port
default: 80

node_templates:
example-pod:

type: tosca.nodes.indigo.KubernetesObject
properties:

spec:
concat:
- |-
apiVersion: v1
kind: Pod
metadata:
name: nginx

spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort:

- get_input: container_port

Let’s save the definition above to the tosca-example.yaml file.

If you want to expose a created TOSCA template in your localhost, you can use a simple python HTTP server as
follows:

TOSCA template will then be exposed on URL: `http://127.0.0.1:8000/tosca-example.
→˓yaml`
python3 -m http.server 8000

118 Chapter 4. Developer Documentation

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csd05/TOSCA-Simple-Profile-YAML-v1.0-csd05.html

Krake, Release 1.0.0

Cloud Service Archive

CSAR should be in a defined format. The specification allows to create CSAR with or without the TOSCA.meta file.
The TOSCA.meta file structure follows the exact same syntax as defined in the TOSCA 1.0 specification. It is re-
quired to store this file in the TOSCA-Metadata directory. It is also required to include the Entry-Definitions
keyword pointing to a valid TOSCA definitions YAML file, which should be used by a TOSCA orchestrator as an en-
trypoint for parsing the contents of the overall CSAR file (the previously created tosca-example.yaml file will
be used in this example).

Note: The Krake API can process CSAR files only, if they’re defined as **URL**s. It means, that CSAR should be
created and then exposed in some remote location. Then, the underlying tosca-parser library is able to (synchronously)
download the CSAR archive from the defined URL and afterwards parse and validate it.

Create TOSCA-Metadata directory
mkdir TOSCA-Metadata
Create and fill TOSCA.meta file
echo "TOSCA-Meta-File-Version: 1.0" >> TOSCA-Metadata/TOSCA.meta
echo "CSAR-Version: 1.1" >> TOSCA-Metadata/TOSCA.meta
echo "Created-By: Krake" >> TOSCA-Metadata/TOSCA.meta
echo "Entry-Definitions: tosca-example.yaml" >> TOSCA-Metadata/TOSCA.meta
Create CSAR
zip example.csar -r TOSCA-Metadata/ tosca-example.yaml

Expose the created CSAR by simple HTTP python server
CSAR will be then exposed on URL: `http://127.0.0.1:8000/example.csar`
Expose the created CSAR file with a simple HTTP python server
CSAR will then be exposed on URL: `http://127.0.0.1:8000/example.csar`
python3 -m http.server 8000

4.14.3 TOSCA/CSAR Workflow

The TOSCA template or CSAR archive should be composed on the client side. Then the client sends the request
for the creation or update of an application together with the TOSCA template (YAML file or URL) or CSAR URL.
The Krake API validates the TOSCA template or CSAR file suffixes depending on the used URL. When the TOSCA
template is defined with a YAML file, parsing and validation are performed by Krake API (using the tosca-parser).
After validation, the life cycle of the application is the same as a regular one (defined by Kubernetes manifest) except
for the translation of the TOSCA template or CSAR archive into a Kubernetes manifest inside of the Kubernetes
Application Controller. The controller is responsible for the translation of TOSCA/CSAR to Kubernetes manifests.
During this process, the application will in the TRANSLATING state.

The workflow of this process can be seen in the following figure:

4.14.4 Examples

Prerequisites

The Krake repository contains a bunch of useful examples. Clone it first with the following commands:

git clone https://gitlab.com/rak-n-rok/krake.git
cd krake

4.14. TOSCA 119

https://www.oasis-open.org/committees/download.php/46057/CSAR%20V0-1.docx
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.2/os/TOSCA-Simple-Profile-YAML-v1.2-os.html#_Toc528072959
https://github.com/openstack/tosca-parser
https://github.com/openstack/tosca-parser

Krake, Release 1.0.0

Fig. 11: TOSCA/CSAR workflow in Krake

TOSCA template examples are located in the rak/functionals directory. View these TOSCA templates for
example:

$ cat rak/functionals/echo-demo-tosca.yaml
$ cat rak/functionals/echo-demo-update-tosca.yaml

If you want to expose a created TOSCA template via some URL, you can use a simple python HTTP server as follows:

cd rak/functionals/
Expose the TOSCA template examples with a simple HTTP python server
TOSCA template examples will then be exposed on URLs:
- `http://127.0.0.1:8000/echo-demo-tosca.yaml`
- `http://127.0.0.1:8000/echo-demo-update-tosca.yaml`
python3 -m http.server 8000

If you are interested in CSAR, use the pre-defined TOSCA.meta file and create and expose CSAR archive as follows:

cd rak/functionals/
zip echo-demo.csar -r TOSCA-Metadata/ echo-demo-tosca.yaml
Expose the created CSAR by simple HTTP python server
CSAR will be then exposed on URL: `http://127.0.0.1:8000/example.csar`
python3 -m http.server 8000

Rok

A TOSCA template YAML file should be applied the same way as a Kubernetes manifest file using the rok CLI, see
Rok documentation.

• Create an application described by a TOSCA template YAML file:

rok kube app create --file rak/functionals/echo-demo-tosca.yaml echo-demo

• Update an application described by a TOSCA template:

120 Chapter 4. Developer Documentation

Krake, Release 1.0.0

rok kube app update --file rak/functionals/echo-demo-update-tosca.yaml echo-demo

A TOSCA template URL or CSAR archive URL should be defined after the optional –url argument using the rok CLI,
see Rok documentation.

• Create an application described by a TOSCA template URL:

rok kube app create --url http://127.0.0.1:8000/echo-demo-tosca.yaml echo-demo

• Update an application described by a TOSCA template URL:

rok kube app update --url http://127.0.0.1:8000/echo-demo-update-tosca.yaml echo-demo

• Alternatively, create an application described by a CSAR URL:

rok kube app create --url http://127.0.0.1:8000/example.csar echo-demo

Tip: Krake allows the creation of an application using e.g. a plain Kubernetes manifest and then updating it with
a TOSCA or even CSAR file. The same works vice-versa. It means, that the application could be created and then
updated by any supported format (Kubernetes manifest, TOSCA, CSAR).

4.15 Krake Reference

This is the code reference for the Krake project.

4.15.1 Module hierarchy

This section presents the modules and sub-modules of the Krake project present in the krake/ directory.

The tests for Krake are added in the krake/tests/ directory. The pytest module is used to launch all unit tests.

krake The krake module itself only contains a few utility functions, as well as functions for reading and validating
the environment variables and the configuration provided. However, this module contains several sub-modules
presented in the following.

krake.api This module contains the logic needed to start the API as a an aiohttp application. It exchanges objects
with the various clients defined in krake.client. These objects are the ones defined in krake.data.

krake.client This module contains all the necessary logic for any kind of client to communicate with the API de-
scribed in the krake.api module.

krake.controller This module contains the base controller and the definition for several controllers. Each one of these
controllers is a separate process, that communicates with the API or the database. For this, the controllers use
elements provided by the krake.client module.

All new controller should be added in this module.

krake.controller.kubernetes.application This sub-module contains the definition of the controller specialized
for the Kubernetes application handling.

krake.controller.kubernetes.cluster This sub-module contains the definition of the controller specialized for
the Kubernetes cluster handling.

krake.controller.scheduler This sub-module defines the Scheduler controller, responsible for binding the
Krake applications and magnum clusters to the specific backends.

4.15. Krake Reference 121

Krake, Release 1.0.0

krake.controller.gc This sub-module defines the Garbage Collector controller, responsible for handling the
dependencies during the deletion of a resource. It marks as deleted all dependents of a resource marked as
deleted, thus triggering their deletion.

krake.controller.magnum This sub-module defines the Magnum controller, responsible for managing Mag-
num cluster resources and creating their respective Kubernetes cluster.

krake.data This module defines all elements used by the API and the controllers. It contains the definition of all
these objects, and the logic to allow them to be serialized and deserialized.

4.15.2 Krake

class krake.ConfigurationOptionMapper(config_cls, option_fields_mapping=None)
Bases: object

Handle the creation of command line options for a specific Configuration class. For each attribute of the Con-
figuration, and recursively, an option will be added to set it from the command line. A mapping between the
option name and the hierarchical list of fields is created. Nested options keep the upper layers as prefixes, which
are separated by a “-” character.

For instance, the following classes:

class SpaceShipConfiguration(Serializable):
name: str
propulsion: PropulsionConfiguration

class PropulsionConfiguration(Serializable):
power: int
engine_type: TypeConfiguration

class TypeConfiguration(Serializable):
name: str

Will be transformed into the following options:

--name str
--propulsion-power int
--propulsion-engine-type-name: str

And the option-fields mapping will be:

{
"name": [Field(name="name", ...)],
"propulsion-power": [

Field(name="propulsion", ...), Field(name="power", ...)
],
"propulsion-engine-type-name": [

Field(name="propulsion", ...),
Field(name="engine_type", ...),
Field(name="name", ...),

],
}

Then, from parsed arguments, the default value of an element of configuration are replaced by the elements set
by the user through the parser, using this mapping.

122 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#object

Krake, Release 1.0.0

The mapping of the option name to the list of fields is necessary here because a configura-
tion element called "lorem-ipsum" with a "dolor-sit-amet" element will be trans-
formed into a "--lorem-ipsum-dolor-sit-amet" option. It will then be parsed as
"lorem_ipsum_dolor_sit_amet". This last string, if split with "_", could be separated into
"lorem" and "ipsum_dolor_sit_amet", or "lorem_ipsum_dolor" and "sit_amet". Hence
the idea of the mapping to get the right separation.

Parameters

• config_cls (type) – the configuration class which will be used as a model to generate
the options.

• option_fields_mapping (dict, optional) – a mapping of the option
names, with POSIX convention (with “-” character”), to the list of fields: <op-
tion_name_with_dash>: <hierarchical_list_of_fields> This argument can be used to set the
mapping directly, instead of creating it from a Configuration class.

add_arguments(parser)
Using the configuration class given, create automatically and recursively command-line options to set
the different attributes of the configuration. Nested options keep the upper layers as prefixes, which are
separated by a “-” character.

Generate the mapping between the option name and the hierarchy of the attributes of the Configuration.

Parameters parser (argparse.ArgumentParser) – the parser to which the new
command-line options will be added.

merge(config, args)
Merge the configuration taken from file and the one from the command line arguments. The arguments
have priority and replace the values read from configuration.

Parameters

• config (dict) – the configuration to replace the values from.

• args (dict) – the values read by the command line parser.

Returns

the result of the merge of the CLI arguments into the configuration, as serializable object.

Return type krake.data.serializable.Serializable

krake.load_yaml_config(filepath)
Load Krake base configuration settings from YAML file

Parameters filepath (os.PathLike, optional) – Path to YAML configuration file

Raises FileNotFoundError – If no configuration file can be found

Returns Krake YAML file configuration

Return type dict

krake.search_config(filename)
Search configuration file in known directories.

The filename is searched in the following directories in given order:

1. Current working directory

2. /etc/krake

Returns Path to configuration file

4.15. Krake Reference 123

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/stdtypes.html#dict

Krake, Release 1.0.0

Return type os.PathLike

Raises FileNotFoundError – If the configuration cannot be found in any of the search loca-
tions.

krake.setup_logging(config_log)
Setups Krake logging based on logging configuration and global config level for each logger without log-level
configuration

Parameters config_log (dict) – dictschema logging configuration (see logging.config.
dictConfig())

4.15.3 API Server

This module provides the HTTP RESTful API of the Krake application. It is implemented as an aiohttp application.

This module defines the bootstrap function for creating the aiohttp server instance serving Krake’s HTTP API.

Krake serves multiple APIs for different technologies, e.g. the core functionality like roles and role bindings are served
by the krake.api.core API where as the Kubernetes API is provided by krake.api.kubernetes.

Example

The API server can be run as follows:

from aiohttp import web
from krake.api.app import create_app

config = ...
app = create_app(config)
web.run_app(app)

krake.api.app.cors_setup(app)
Set the default CORS (Cross-Origin Resource Sharing) rules for all routes of the given web application.

Parameters app (web.Application) – Web application

krake.api.app.create_app(config)
Create aiohttp application instance providing the Krake HTTP API

Parameters config (krake.data.config.ApiConfiguration) – Application configu-
ration object

Returns Krake HTTP API

Return type aiohttp.web.Application

krake.api.app.db_session(app, host, port)
Async generator creating a database krake.api.database.Session that can be used by other compo-
nents (middleware, route handlers) or by the requests handlers. The database session is available under the db
key of the application.

This function should be used as cleanup context (see aiohttp.web.Application.cleanup_ctx).

Parameters app (aiohttp.web.Application) – Web application

krake.api.app.http_session(app, ssl_context=None)
Async generator creating an aiohttp.ClientSession HTTP(S) session that can be used by other com-
ponents (middleware, route handlers). The HTTP(S) client session is available under the http key of the
application.

124 Chapter 4. Developer Documentation

https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig
https://docs.aiohttp.org/en/stable/structures.html#module-aiohttp
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application.cleanup_ctx
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession

Krake, Release 1.0.0

This function should be used as cleanup context (see aiohttp.web.Application.cleanup_ctx).

Parameters app (aiohttp.web.Application) – Web application

krake.api.app.load_authentication(config)
Create the authentication middleware middlewares.authentication().

The authenticators are loaded from the “authentication” configuration key. If the server is configured with TLS,
client certificates are also added as authentication (auth.client_certificate_authentication())
strategy.

Parameters config (krake.data.config.ApiConfiguration) – Application configu-
ration object

Returns aiohttp middleware handling request authentication

krake.api.app.load_authorizer(config)
Load authorization function from configuration.

Parameters config (krake.data.config.ApiConfiguration) – Application configu-
ration object

Raises ValueError – If an unknown authorization strategy is configured

Returns Coroutine function for authorizing resource requests

Authentication and Authorization

Authentication and Authorization module for Krake.

Access to the Krake API is controlled by two distinct mechanisms performed after each other:

Authentication verifies the identity of a user (Who is requesting?)

Authorization decides if the user has permission to access a resource

Authentication

Authentication is performed for every request. The krake.api.middlewares.authentication() middle-
ware factory is used for this purpose. The concrete authentication implementation will be derived from the configura-
tion.

Anonymous authentication
authentication:

kind: static
name: system

Keystone authentication
authentication:

kind: keystone
endpoint: http://localhost:5000/v3

An authenticator is a simple asynchronous function:

Currently, there are two authentication implementations available:

• Static authentication (static_authentication())

• Keystone authentication (keystone_authentication())

4.15. Krake Reference 125

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application.cleanup_ctx
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application
https://docs.python.org/3/library/exceptions.html#ValueError

Krake, Release 1.0.0

Authorization

Authorization is established with the help of the protected() decorator function. The decorator annotates a given
aiohttp request handler with the required authorization information (see AuthorizationRequest).

An authorizer is a simple asynchronous function:

The concrete authentication implementation will be derived from the configuration and is stored under the
authorizer key of the application.

Authorization mode
#
- RBAC (Role-based access control)
- always-allow (Allow all requests. No authorization is performed.)
- always-deny (Deny all requests. Only for testing purposes.)
#
authorization: always-allow

Currently, there are three authorization implementations available:

• Always allow (always_allow())

• Always deny (always_deny())

• Role-based access control / RBAC (rbac())

class krake.api.auth.AuthorizationRequest
Bases: tuple

Authorization request handled by authorizers.

api
Name of the API group

Type str

namespace
If the resource is namespaced, the requested namespace

Type str, optional

resource
Name of the resource

Type str

verb
Verb that should be performed on the resource.

Type krake.data.core.Verb

api
Alias for field number 0

namespace
Alias for field number 1

resource
Alias for field number 2

verb
Alias for field number 3

126 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

krake.api.auth.always_allow(request, auth_request)
Authorizer allowing every request.

Parameters

• request (aiohttp.web.Request) – Incoming HTTP request

• auth_request (AuthorizationRequest) – Authorization request associated with
the incoming HTTP request.

krake.api.auth.always_deny(request, auth_request)
Authorizer denying every request.

Parameters

• request (aiohttp.web.Request) – Incoming HTTP request

• auth_request (AuthorizationRequest) – Authorization request associated with
the incoming HTTP request.

Raises aiohttp.web.HTTPForbidden – Always raised

krake.api.auth.client_certificate_authentication()
Authenticator factory for authenticating requests with client certificates.

The client certificate is loaded from the peercert attribute of the underlying TCP transport. The common
name of the client certificate is used as username

Returns Authenticator using client certificate information for authentication.

Return type callable

krake.api.auth.keycloak_authentication(endpoint, realm)
Authenticator factory for Keycloak authentication.

The token in the Authorization header of a request sent to Krake will be sent as access token to the OpenID
user information endpoint. The returned user name from Keycloak is used as authenticated user name.

The authenticator requires an HTTP client session that is loaded from the http key of the application.

Parameters

• endpoint (str) – Keycloak HTTP endpoint.

• realm (str) – Keycloak realm to use at this endpoint.

Returns Authenticator for the given Keystone endpoint.

Return type callable

krake.api.auth.keystone_authentication(endpoint)
Authenticator factory for OpenStack Keystone authentication.

The token in the Authorization header of a request will be used as X-Auth-Token header for a request
to the Keystone token endpoint. The returned user name from Keystone is used as authenticated user name.

The authenticator requires an HTTP client session that is loaded from the http key of the application.

Parameters endpoint (str) – Keystone HTTP endpoint

Returns Authenticator for the given Keystone endpoint.

Return type callable

krake.api.auth.protected(api, resource, verb)
Decorator function for aiohttp request handlers performing authorization.

4.15. Krake Reference 127

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

The returned decorator can be used to wrap a given aiohttp handler and call the current authorizer of the appli-
cation (loaded from the authorizer key of the application). If the authorizer does not raise any exception
the request is authorized and the wrapped request handler is called.

Example

from krake.api.auth import protected

@routes.get("/book/{name}")
@protected(api="v1", resource="book", verb="get", namespaced=False)
async def get_resource(request):

assert "user" in request

Parameters

• api (str) – Name of the API group

• resource (str) – Name of the resource

• verb (str, krake.data.core.Verb) – Verb that should be performed

Returns Decorator that can be used to wrap a given aiohttp request handler.

Return type callable

krake.api.auth.rbac(request, auth_request)
Role-based access control authorizer.

The roles of a user are loaded from the database. It checks if any role allows the verb on the resource in the
namespace. Roles are only permissive. There are no denial rules.

Parameters

• request (aiohttp.web.Request) – Incoming HTTP request

• auth_request (AuthorizationRequest) – Authorization request associated with
the incoming HTTP request.

Returns The role allowing access.

Return type krake.data.core.Role

Raises aiohttp.web.HTTPForbidden – If no role allows access.

krake.api.auth.static_authentication(name)
Authenticator factory for authenticating every request with the given name.

Parameters name (str) – Static user name that should be used for every request.

Returns Authenticator returning the given name for every request.

Return type callable

Database Abstraction

Database abstraction for etcd. Key idea of the abstraction is to provide an declarative way of defining persistent data
structures (aka. “models”) together with a simple interface for loading and storing these data structures.

This goal is achieved by leveraging the JSON-serializable data classes based on krake.data.serializable
and combining them with a simple database session.

128 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request
https://docs.python.org/3/library/stdtypes.html#str
https://etcd.io/

Krake, Release 1.0.0

Example

from krake.api.database import Session
from krake.data import Key
from krake.data.serializable import Serializable

class Book(Serializable):
isbn: int
title: str

__etcd_key__ = Key("/books/{isbn}")

async with Session(host="localhost") as session:
book = await session.get(Book, isbn=9783453146976)

exception krake.api.database.DatabaseError
Bases: Exception

class krake.api.database.EtcdClient(host=’127.0.0.1’, port=2379, protocol=’http’,
cert=(), verify=None, timeout=None, headers=None,
user_agent=None, pool_size=30, username=None,
password=None, token=None, server_version=’3.3.0’,
cluster_version=’3.3.0’)

Bases: etcd3.aio_client.AioClient

Async etcd v3 client based on etcd3.aio_client.AioClient with some minor patches.

class krake.api.database.Event
Bases: tuple

Events that are yielded by Session.watch()

event
Type of event that occurred (PUT or DELETE)

Type EventType

value
Deserialized object. None if the event is of kind DELETE.

Type object, None

rev
Revision of the object

Type Revision

event
Alias for field number 0

rev
Alias for field number 2

value
Alias for field number 1

class krake.api.database.EventType
Bases: enum.Enum

Different types of events that can occur during Session.watch().

4.15. Krake Reference 129

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/enum.html#enum.Enum

Krake, Release 1.0.0

class krake.api.database.Revision
Bases: tuple

Etcd revision of a loaded key-value pair.

Etcd stores all keys in a flat binary key space. The key space has a lexically sorted index on byte string keys.
The key space maintains multiple revisions of the same key. Each atomic mutative operation (e.g., a transaction
operation may contain multiple operations) creates a new revision on the key space.

Every Session.get() request returns also the revision besides the model.

key
Key in the etcd database

Type str

created
is the revision of last creation on this key.

Type int

modified
is the revision of last modification on this key.

Type int

version
is the version of the key. A deletion resets the version to zero and any modification of the key increases its
version.

Type int

created
Alias for field number 1

key
Alias for field number 0

modified
Alias for field number 2

version
Alias for field number 3

class krake.api.database.Session(host, port=2379, loop=None)
Bases: object

Database session for managing krake.data.serializable.Serializable objects in an etcd
database.

The serializable objects need have one additional attribute:

__etcd_key__ A krake.data.Key template for the associated etcd key of a managed object.

Objects managed by a session have an attached etcd Revision when loaded from the database. This revision
can be read by revision(). If an object has no revision attached, it is considered fresh or new. It is expected
that the associated key of a new object does not already exist in the database.

The session is an asynchronous context manager. It takes of care of opening and closing an HTTP session to the
gRPC JSON gateway of the etcd server.

The etcd v3 protocol is documented by its protobuf definitions.

130 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://etcd.io/docs/v3.3.12/dev-guide/api_reference_v3/

Krake, Release 1.0.0

Example

async with Session(host="localhost") as session:
pass

Parameters

• host (str) – Hostname of the etcd server

• port (int, optional) – Client port of the etcd server

• loop (async.AbstractEventLoop, optional) – asyncio event loop that should
be used

all(cls, **kwargs)
Fetch all instances of a given type

The instances can be filtered by partial identities. Every identity can be specified as keyword argument and
only instances with this identity attribute are returned. The only requirement for a filtered identity attribute
is that all preceding identity attributes must also be given.

Example

class Book(Serializable):
isbn: int
title: str
author: str

__metadata__ = {
"key": Key("/books/{author}/{isbn}")

}

await db.all(Book)

Get all books by Adam Douglas
await db.all(Book, author="Adam Douglas")

This will raise a TypeError because the preceding "name"
attribute is not given.
await db.all(Book, isbn=42)

Parameters

• cls (type) – Serializable class that should be loaded

• **kwargs – Parameters for the etcd key

Yields (object, Revision) – Tuple of deserialized model and revision

Raises TypeError – If an identity attribute is given without all preceding identity attributes.

client
Lazy loading of the etcd client. It is only created when the first request is performed.

Returns the client to connect to the database.

Return type EtcdClient

4.15. Krake Reference 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError

Krake, Release 1.0.0

delete(instance)
Delete a given instance from etcd.

A transaction is used ensuring the etcd key was not modified in-between. If the transaction is successful,
the revision of the instance will be updated to the revision returned by the transaction response.

Parameters instance (object) – Serializable object that should be deleted

Raises

• ValueError – If the passed object has no revision attached.

• TransactionError – If the key was modified in between

get(cls, **kwargs)
Fetch an serializable object from the etcd server specified by its identity attribute.

cls
Serializable class that should be loaded

Type type

**kwargs
Parameters for the etcd key

Returns Deserialized model with attached revision. If the key was not found in etcd, None is
returned.

Return type object, None

load_instance(cls, kv)
Load an instance and its revision by an etcd key-value pair

Parameters

• cls (type) – Serializable type

• kv – etcd key-value pair

Returns Deserialized model with attached revision

Return type object

put(instance)
Store new revision of a serializable object on etcd server.

If the instances does not have an attached Revision (see revision()), it is assumed that a key-value
pair should be created. Otherwise, it is assumed that the key-value pair is updated.

A transaction ensures that

a) the etcd key was not modified in-between if the key is updated

b) the key does not already exists if a key is added

If the transaction is successful, the revision of the instance will updated to the revision returned by the
transaction response.

Parameters

• instance (krake.data.serializable.Serializable) – Serializable object
that

• be stored. (should) –

Raise:

132 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#object

Krake, Release 1.0.0

TransactionError: If the key was modified in between or already exists

watch(cls, **kwargs)
Watch the namespace of a given serializable type and yield every change in this namespace.

Internally, it uses the etcd watch API. The created future can be used to signal successful creation of an
etcd watcher.

Parameters

• cls (type) – Serializable type of which the namespace should be watched

• **kwargs – Parameters for the etcd key

Yields Event – Every change in the namespace will generate an event

exception krake.api.database.TransactionError
Bases: krake.api.database.DatabaseError

class krake.api.database.Watcher(session, model, **kwargs)
Bases: object

Async context manager for database watching requests.

This context manager is used internally by Session.watch(). It returns a async generator on entering. It is
ensured that the watch is created on entering. This means inside the context, it can be assumed that the watch
exists.

Parameters

• session (Session) – Database session doing the watch request

• model (type) – Class that is loaded from database

• **kwargs (dict) – Keyword arguments that are used to generate the etcd key prefix
(Key.prefix())

watch()
Async generator for watching database prefix.

Yields Event –

Database event holding the loaded model (see model argument) and database revision.

krake.api.database.revision(instance)
Returns the etcd Revision of an object used with a Session. If the object is currently unattached – which
means it was not retrieved from the database with Session.get() – this function returns None.

Parameters instance (object) – Object used with Session.

Returns The current etcd revision of the instance.

Return type Revision, None

Helpers

Simple helper functions that are used by the HTTP endpoints.

class krake.api.helpers.Heartbeat(response, interval=None)
Bases: object

Asynchronous context manager for heartbeating long running HTTP responses.

Writes newlines to the response body in a given heartbeat interval. If interval is set to 0, no heartbeat will
be sent.

4.15. Krake Reference 133

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object

Krake, Release 1.0.0

Parameters

• response (aiohttp.web.StreamResponse) – Prepared HTTP response with chun-
ked encoding

• interval (int, float, optional) – Heartbeat interval in seconds. Default: 10
seconds.

Raises ValueError – If the response is not prepared or not chunk encoded

Example

import asyncio
from aiohttp import web

from krake.helpers import Heartbeat

async def handler(request):
Prepare streaming response
resp = web.StreamResponse()
resp.enable_chunked_encoding()
await resp.prepare(request)

async with Heartbeat(resp):
while True:

await resp.write(b"spam\n")
await asyncio.sleep(120)

heartbeat()
Indefinitely write a new line to the response body and sleep for interval.

class krake.api.helpers.HttpProblem(**kwargs)
Bases: krake.data.serializable.Serializable

Store the reasons for failures of the HTTP layers for the API.

The reason is stored as an RFC 7807 Problem. It is a way to define a uniform, machine-readable details of errors
in a HTTP response. See https://tools.ietf.org/html/rfc7807 for details.

type
A URI reference that identifies the problem type. It should point the Krake API users to the concrete part
of the Krake documentation where the problem type is explained in detail. Defaults to about:blank.

Type str

title
A short, human-readable summary of the problem type

Type HttpProblemTitle

status
The HTTP status code

Type int

detail
A human-readable explanation of the problem

Type str

134 Chapter 4. Developer Documentation

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.StreamResponse
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://tools.ietf.org/html/rfc7807
about:blank
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

instance
A URI reference that identifies the specific occurrence of the problem

Type str

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

classmethod remove_none_values(data, **kwargs)
Remove attributes if value equals None

__post_init__()
HACK: marshmallow.Schema allows registering hooks like post_dump. This is not allowed
in krake Serializable, therefore within marshmallow.Schema allows registering hooks like
post_dump. This is not allowed in krake Serializable, therefore the __post_init__ method is reg-
istered directly within the hook.

remove_none_values(data, **kwargs)
Remove attributes if value equals None

exception krake.api.helpers.HttpProblemError(exc: aio-
http.web_exceptions.HTTPException,
problem: krake.api.helpers.HttpProblem
= HttpProblem(type=’about:blank’, ti-
tle=None, status=None, detail=None,
instance=None), **kwargs)

Bases: Exception

Custom exception raised if failures on the HTTP layers occur

class krake.api.helpers.HttpProblemTitle
Bases: enum.Enum

Store the title of an RFC 7807 problem.

The RFC 7807 Problem title is a short, human-readable summary of the problem type. The name defines the
title itself. The value is used as part of the URI reference that identifies the problem type, see middlewares.
problem_response() for details.

class krake.api.helpers.ListQuery
Bases: object

Simple mixin class for operation template classes.

Defines default operation.query attribute for list and list all operations.

class krake.api.helpers.QueryFlag(**metadata)
Bases: marshmallow.fields.Field

Field used for boolean query parameters.

If the query parameter exists the field is deserialized to True regardless of the value. The field is marked as
load_only.

deserialize(value, attr=None, data=None, **kwargs)
Deserialize value.

Parameters

• value – The value to deserialize.

4.15. Krake Reference 135

https://docs.python.org/3/library/stdtypes.html#str
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/functions.html#object
https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field
https://docs.python.org/3/library/constants.html#True

Krake, Release 1.0.0

• attr – The attribute/key in data to deserialize.

• data – The raw input data passed to Schema.load.

• kwargs – Field-specific keyword arguments.

Raises ValidationError – If an invalid value is passed or if a required value is missing.

krake.api.helpers.blocking()
Decorator function to enable function blocking. This allows only a return of the response if the requested action
is completed (eg. deletion of a resource). The function logic is therefore executed after its decorated counterpart.

Returns JSON style response coming from the handler

Return type Response

krake.api.helpers.load(argname, cls)
Decorator function for loading database models from URL parameters.

The wrapper loads the name parameter from the requests match_info attribute. If the match_info con-
tains a namespace parameter, it is used as etcd key parameter as well.

Example

from aiohttp import web

from krake.data import serialize
from krake.data.core import Role

@load("role", Role)
def get_role(request, role):

return json_response(serialize(role))

Parameters

• argname (str) – Name of the keyword argument that will be passed to the wrapped
function.

• cls (type) – Database model class that should be loaded

Returns Decorator for aiohttp request handlers

Return type callable

krake.api.helpers.make_create_request_schema(cls)
Create a marshmallow.Schema excluding subresources and read-only.

Parameters cls (type) – Data class with Schema attribute

Returns Schema instance with excluded subresources

Return type marshmallow.Schema

krake.api.helpers.session(request)
Load the database session for a given aiohttp request

Internally, it just returns the value that was given as cleanup context by func:krake.api.app.db_session.

Parameters request (aiohttp.web.Request) – HTTP request

Returns Database session for the given request

Return type krake.database.Session

136 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://docs.python.org/3/library/functions.html#type
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Request

Krake, Release 1.0.0

krake.api.helpers.use_schema(argname, schema)
Decorator function for loading a marshmallow.Schema from the request body.

If the request body is not valid JSON aiohttp.web.HTTPUnsupportedMediaType will be raised in the
wrapper.

Parameters

• argname (str) – Name of the keyword argument that will be passed to the wrapped
function.

• schema (marshmallow.Schema) – Schema that should used to deserialize the request
body

Returns Decorator for aiohttp request handlers

Return type callable

Middlewares

This modules defines aiohttp middlewares for the Krake HTTP API

krake.api.middlewares.authentication(authenticators, allow_anonymous)
Middleware factory authenticating every request.

The concrete implementation is delegated to the passed asynchronous authenticator function (see krake.api.
auth for details). This function returns the username for an incoming request. If the request is unauthenticated
– meaning the authenticator returns None – system:anonymous is used as username.

The username is registered under the user key of the incoming request.

Anonymous requests can be allowed. If no authenticator authenticates the incoming request, “sys-
tem:anonymous” is assigned as user for the request. This behavior can be disabled. In that case “401 Unautho-
rized” is raised if an request is not authenticated by any authenticator.

Parameters

• authenticators (List[callable]) – List if asynchronous function returning the
username for a given request.

• allow_anonymous (bool) – If True, anonymous (unauthenticated) requests are al-
lowed.

Returns aiohttp middleware loading a username for every incoming HTTP request.

krake.api.middlewares.error_log()
Middleware factory for logging exceptions in request handlers

Returns aiohttp middleware catching every exception logging it to the passed logger and reraising
the exception.

krake.api.middlewares.problem_response(problem_base_url=None)
Middleware factory for HTTP exceptions in request handlers

Parameters problem_base_url (str, optional) – Base URL of the Krake documentation
where HTTP problems are explained in detail.

Returns aiohttp middleware catching HttpProblemError or HTTPException based exception trans-
forming the excpetion text to the helpers.HttpProblem (RFC 7807 Problem representa-
tion of failure) and reraising the exception.

4.15. Krake Reference 137

https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://docs.python.org/3/library/stdtypes.html#str
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

krake.api.middlewares.retry_transaction(retry=1)
Middleware factory for transaction error handling.

If a database.TransactionError occurs, the request handler is retried for the specified number of times.
If the transaction error persists, a 409 Conflict HTTP exception is raised.

Parameters retry (int, optional) – Number of retries if a transaction error occurs.

Returns aiohttp middleware handling transaction errors.

Return type coroutine

4.15.4 Client

This module provides a simple Python client to the Krake HTTP API. It leverages the same data models as the API
server from krake.data.

class krake.client.ApiClient(client)
Bases: object

Base class for all clients of a specific Krake API.

client
the lower-level client to use to create the actual connections.

Type krake.client.Client

plurals
contains the name of the resources handled by the current API and their corresponding names in plural:
“<name_in_singular>”: “<name_in_plural>”

Type dict[str, str]

Parameters client (krake.client.Client) – client to use for the HTTP communications.

class krake.client.Client(url, loop=None, ssl_context=None)
Bases: object

Simple async Python client for the Krake HTTP API.

The specific APIs are implemented in separate classes. Each API object requires an Client instance to inter-
face the HTTP REST API.

The client implements the asynchronous context manager protocol used to handle opening and closing the
internal HTTP session.

Example

from krake.client import Client
from krake.client.core import CoreApi

async with Client("http://localhost:8080") as client:
core_api = CoreApi(client)
role = await core_api.read_role(name="reader")

close()
Close the internal HTTP session and remove all resource attributes.

open()
Open the internal HTTP session and initializes all resource attributes.

138 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

Krake, Release 1.0.0

class krake.client.Watcher(session, url, model)
Bases: object

Async context manager used by watch_*() methods of ClientApi.

The context manager returns the async generator of resources. On entering it is ensured that the watch is created.
This means inside the context a watch is already established.

Parameters

• session (aiohttp.ClientSession) – HTTP session that is used to access the REST
API.

• url (str) – URL for the watch request

• model (type) – Type that will be used to deserialize krake.data.core.
WatchEvent.object

watch()
Async generator yielding watch events

Yields krake.data.core.WatchEvent –

Watch events where object is already deserialized correctly according to the API defini-
tion (see model argument)

Client APIs

class krake.client.core.CoreApi(client)
Bases: krake.client.ApiClient

Core API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
core_api = CoreApi(client)

Parameters client (krake.client.Client) – API client for accessing the Krake HTTP
API

create_global_metric(body)
Create the specified GlobalMetric.

Parameters body (GlobalMetric) – Body of the HTTP request.

Returns Body of the HTTP response.

Return type GlobalMetric

create_global_metrics_provider(body)
Create the specified GlobalMetricsProvider.

Parameters body (GlobalMetricsProvider) – Body of the HTTP request.

Returns Body of the HTTP response.

Return type GlobalMetricsProvider

4.15. Krake Reference 139

https://docs.python.org/3/library/functions.html#object
https://docs.aiohttp.org/en/stable/client_reference.html#aiohttp.ClientSession
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type

Krake, Release 1.0.0

create_metric(body, namespace)
Create the specified Metric.

Parameters

• body (Metric) – Body of the HTTP request.

• namespace (str) – namespace of the Metric

Returns Body of the HTTP response.

Return type Metric

create_metrics_provider(body, namespace)
Create the specified MetricsProvider.

Parameters

• body (MetricsProvider) – Body of the HTTP request.

• namespace (str) – Namespace of the MetricsProvider.

Returns Body of the HTTP response.

Return type MetricsProvider

create_role(body)
Create the specified Role.

Parameters body (Role) – Body of the HTTP request.

Returns Body of the HTTP response.

Return type Role

create_role_binding(body)
Create the specified RoleBinding.

Parameters body (RoleBinding) – Body of the HTTP request.

Returns Body of the HTTP response.

Return type RoleBinding

delete_global_metric(name)
Delete the specified GlobalMetric.

Parameters name (str) – name of the GlobalMetric.

Returns Body of the HTTP response.

Return type GlobalMetric

delete_global_metrics_provider(name)
Delete the specified GlobalMetricsProvider.

Parameters name (str) – name of the GlobalMetricsProvider.

Returns Body of the HTTP response.

Return type GlobalMetricsProvider

delete_metric(name, namespace)
Delete the specified Metric.

Parameters

• name (str) – name of the Metric.

140 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

• namespace (str) – namespace of the Metric

Returns Body of the HTTP response.

Return type Metric

delete_metrics_provider(name, namespace)
Delete the specified MetricsProvider.

Parameters

• name (str) – name of the MetricsProvider.

• namespace (str) – namespace of the MetricsProvider.

Returns Body of the HTTP response.

Return type MetricsProvider

delete_role(name)
Delete the specified Role.

Parameters name (str) – name of the Role.

Returns Body of the HTTP response.

Return type Role

delete_role_binding(name)
Delete the specified RoleBinding.

Parameters name (str) – name of the RoleBinding.

Returns Body of the HTTP response.

Return type RoleBinding

list_global_metrics()
List the GlobalMetrics in the namespace.

Returns Body of the HTTP response.

Return type GlobalMetricList

list_global_metrics_providers()
List the GlobalMetricsProviders in the namespace.

Returns Body of the HTTP response.

Return type GlobalMetricsProviderList

list_metrics(namespace=None)
List the Metrics in the namespace.

Parameters namespace (str) – namespace of the Metric

Returns Body of the HTTP response.

Return type MetricList

list_metrics_providers(namespace=None)
List the MetricsProviders in the namespace.

Parameters namespace (str) – namespace of the MetricsProvider.

Returns Body of the HTTP response.

Return type MetricsProviderList

4.15. Krake Reference 141

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

list_role_bindings()
List the RoleBindings in the namespace.

Returns Body of the HTTP response.

Return type RoleBindingList

list_roles()
List the Roles in the namespace.

Returns Body of the HTTP response.

Return type RoleList

read_global_metric(name)
Read the specified GlobalMetric.

Parameters name (str) – name of the GlobalMetric.

Returns Body of the HTTP response.

Return type GlobalMetric

read_global_metrics_provider(name)
Reads the specified GlobalMetricsProvider.

Parameters name (str) – name of the GlobalMetricsProvider.

Returns Body of the HTTP response.

Return type GlobalMetricsProvider

read_metric(name, namespace)
Read the specified Metric.

Parameters

• name (str) – name of the Metric.

• namespace (str) – namespace of the Metric

Returns Body of the HTTP response.

Return type Metric

read_metrics_provider(name, namespace)
Read the specified MetricsProvider.

Parameters

• name (str) – name of the MetricsProvider.

• namespace (str) – namespace of the MetricsProvider.

Returns Body of the HTTP response.

Return type MetricsProvider

read_role(name)
Read the specified Role.

Parameters name (str) – name of the Role.

Returns Body of the HTTP response.

Return type Role

read_role_binding(name)
Read the specified RoleBinding.

142 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Parameters name (str) – name of the RoleBinding.

Returns Body of the HTTP response.

Return type RoleBinding

update_global_metric(body, name)
Update the specified GlobalMetric.

Parameters

• body (GlobalMetric) – Body of the HTTP request.

• name (str) – name of the GlobalMetric.

Returns Body of the HTTP response.

Return type GlobalMetric

update_global_metrics_provider(body, name)
Update the specified GlobalMetricsProvider.

Parameters

• body (GlobalMetricsProvider) – Body of the HTTP request.

• name (str) – name of the GlobalMetricsProvider.

Returns Body of the HTTP response.

Return type GlobalMetricsProvider

update_metric(body, name, namespace)
Update the specified GlobalMetric.

Parameters

• body (GlobalMetric) – Body of the HTTP request.

• name (str) – name of the Metric.

• namespace (str) – namespace of the Metric

Returns Body of the HTTP response.

Return type GlobalMetric

update_metrics_provider(body, name, namespace)
Update the specified MetricsProvider.

Parameters

• body (MetricsProvider) – Body of the HTTP request.

• name (str) – name of the MetricsProvider.

• namespace (str) – namespace of the MetricsProvider.

Returns Body of the HTTP response.

Return type MetricsProvider

update_role(body, name)
Update the specified Role.

Parameters

• body (Role) – Body of the HTTP request.

• name (str) – name of the Role.

4.15. Krake Reference 143

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Returns Body of the HTTP response.

Return type Role

update_role_binding(body, name)
Update the specified RoleBinding.

Parameters

• body (RoleBinding) – Body of the HTTP request.

• name (str) – name of the RoleBinding.

Returns Body of the HTTP response.

Return type RoleBinding

watch_global_metrics(heartbeat=None)
Generate a watcher for the GlobalMetrics in the namespace.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type GlobalMetricList

watch_global_metrics_providers(heartbeat=None)
Generate a watcher for the GlobalMetricsProviders in the namespace.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type GlobalMetricsProviderList

watch_metrics(namespace=None, heartbeat=None)
Generate a watcher for the Metrics in the namespace.

Parameters

• namespace (str) – namespace of the Metric

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type MetricList

watch_metrics_providers(namespace=None, heartbeat=None)
Generate a watcher for the MetricsProviders in the namespace.

Parameters

• namespace (str) – namespace of the MetricsProvider.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type MetricsProviderList

watch_role_bindings(heartbeat=None)
Generate a watcher for the RoleBindings in the namespace.

144 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type RoleBindingList

watch_roles(heartbeat=None)
Generate a watcher for the Roles in the namespace.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type RoleList

class krake.client.infrastructure.InfrastructureApi(client)
Bases: krake.client.ApiClient

Infrastructure API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
infrastructure_api = InfrastructureApi(client)

Parameters client (krake.client.Client) – API client for accessing the Krake HTTP
API

create_cloud(body, namespace)
Create the specified Cloud.

Parameters

• body (Cloud) – Body of the HTTP request.

• namespace (str) – namespace in which the Cloud will be updated.

Returns Body of the HTTP response.

Return type Cloud

create_global_cloud(body)
Create the specified GlobalCloud.

Parameters body (GlobalCloud) – Body of the HTTP request.

Returns Body of the HTTP response.

Return type GlobalCloud

create_global_infrastructure_provider(body)
Create the specified GlobalInfrastructureProvider.

Parameters body (GlobalInfrastructureProvider) – Body of the HTTP request.

Returns Body of the HTTP response.

Return type GlobalInfrastructureProvider

4.15. Krake Reference 145

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

create_infrastructure_provider(body, namespace)
Create the specified InfrastructureProvider.

Parameters

• body (InfrastructureProvider) – Body of the HTTP request.

• namespace (str) – namespace in which the InfrastructureProvider will be updated.

Returns Body of the HTTP response.

Return type InfrastructureProvider

delete_cloud(namespace, name)
Delete the specified Cloud.

Parameters

• namespace (str) – namespace in which the Cloud will be updated.

• name (str) – name of the Cloud.

Returns Body of the HTTP response.

Return type Cloud

delete_global_cloud(name)
Delete the specified GlobalCloud.

Parameters name (str) – name of the GlobalCloud.

Returns Body of the HTTP response.

Return type GlobalCloud

delete_global_infrastructure_provider(name)
Delete the specified GlobalInfrastructureProvider.

Parameters name (str) – name of the GlobalInfrastructureProvider.

Returns Body of the HTTP response.

Return type GlobalInfrastructureProvider

delete_infrastructure_provider(namespace, name)
Delete the specified InfrastructureProvider.

Parameters

• namespace (str) – namespace in which the InfrastructureProvider will be updated.

• name (str) – name of the InfrastructureProvider.

Returns Body of the HTTP response.

Return type InfrastructureProvider

list_all_clouds()
List all Clouds.

Returns Body of the HTTP response.

Return type CloudList

list_all_infrastructure_providers()
List all InfrastructureProviders.

Returns Body of the HTTP response.

146 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Return type InfrastructureProviderList

list_clouds(namespace)
List the Clouds in the namespace.

Parameters namespace (str) – namespace in which the Cloud will be updated.

Returns Body of the HTTP response.

Return type CloudList

list_global_clouds()
List the GlobalClouds in the namespace.

Returns Body of the HTTP response.

Return type GlobalCloudList

list_global_infrastructure_providers()
List the GlobalInfrastructureProviders in the namespace.

Returns Body of the HTTP response.

Return type GlobalInfrastructureProviderList

list_infrastructure_providers(namespace)
List the InfrastructureProviders in the namespace.

Parameters namespace (str) – namespace in which the InfrastructureProvider will be up-
dated.

Returns Body of the HTTP response.

Return type InfrastructureProviderList

read_cloud(namespace, name)
Read the specified Cloud.

Parameters

• namespace (str) – namespace in which the Cloud will be updated.

• name (str) – name of the Cloud.

Returns Body of the HTTP response.

Return type Cloud

read_global_cloud(name)
Read the specified GlobalCloud.

Parameters name (str) – name of the GlobalCloud.

Returns Body of the HTTP response.

Return type GlobalCloud

read_global_infrastructure_provider(name)
Read the specified GlobalInfrastructureProvider.

Parameters name (str) – name of the GlobalInfrastructureProvider.

Returns Body of the HTTP response.

Return type GlobalInfrastructureProvider

read_infrastructure_provider(namespace, name)
Read the specified InfrastructureProvider.

4.15. Krake Reference 147

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Parameters

• namespace (str) – namespace in which the InfrastructureProvider will be updated.

• name (str) – name of the InfrastructureProvider.

Returns Body of the HTTP response.

Return type InfrastructureProvider

update_cloud(body, namespace, name)
Update the specified Cloud.

Parameters

• body (Cloud) – Body of the HTTP request.

• namespace (str) – namespace in which the Cloud will be updated.

• name (str) – name of the Cloud.

Returns Body of the HTTP response.

Return type Cloud

update_cloud_status(body, namespace, name)
Update the specified Cloud.

Parameters

• body (Cloud) – Body of the HTTP request.

• namespace (str) – namespace in which the Cloud will be updated.

• name (str) – name of the Cloud.

Returns Body of the HTTP response.

Return type Cloud

update_global_cloud(body, name)
Update the specified GlobalCloud.

Parameters

• body (GlobalCloud) – Body of the HTTP request.

• name (str) – name of the GlobalCloud.

Returns Body of the HTTP response.

Return type GlobalCloud

update_global_cloud_status(body, name)
Update the specified GlobalCloud.

Parameters

• body (GlobalCloud) – Body of the HTTP request.

• name (str) – name of the GlobalCloud.

Returns Body of the HTTP response.

Return type GlobalCloud

update_global_infrastructure_provider(body, name)
Update the specified GlobalInfrastructureProvider.

Parameters

148 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

• body (GlobalInfrastructureProvider) – Body of the HTTP request.

• name (str) – name of the GlobalInfrastructureProvider.

Returns Body of the HTTP response.

Return type GlobalInfrastructureProvider

update_infrastructure_provider(body, namespace, name)
Update the specified InfrastructureProvider.

Parameters

• body (InfrastructureProvider) – Body of the HTTP request.

• namespace (str) – namespace in which the InfrastructureProvider will be updated.

• name (str) – name of the InfrastructureProvider.

Returns Body of the HTTP response.

Return type InfrastructureProvider

watch_all_clouds(heartbeat=None)
Generate a watcher for all Clouds.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type CloudList

watch_all_infrastructure_providers(heartbeat=None)
Generate a watcher for all InfrastructureProviders.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type InfrastructureProviderList

watch_clouds(namespace, heartbeat=None)
Generate a watcher for the Clouds in the namespace.

Parameters

• namespace (str) – namespace in which the Cloud will be updated.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type CloudList

watch_global_clouds(heartbeat=None)
Generate a watcher for the GlobalClouds in the namespace.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type GlobalCloudList

4.15. Krake Reference 149

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

watch_global_infrastructure_providers(heartbeat=None)
Generate a watcher for the GlobalInfrastructureProviders in the namespace.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type GlobalInfrastructureProviderList

watch_infrastructure_providers(namespace, heartbeat=None)
Generate a watcher for the InfrastructureProviders in the namespace.

Parameters

• namespace (str) – namespace in which the InfrastructureProvider will be updated.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type InfrastructureProviderList

class krake.client.kubernetes.KubernetesApi(client)
Bases: krake.client.ApiClient

Kubernetes API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
kubernetes_api = KubernetesApi(client)

Parameters client (krake.client.Client) – API client for accessing the Krake HTTP
API

create_application(body, namespace)
Creates the specified Application.

Parameters

• body (Application) – Body of the HTTP request.

• namespace (str) – namespace in which the Application will be updated.

Returns Body of the HTTP response.

Return type Application

create_cluster(body, namespace)
Creates the specified Cluster.

Parameters

• body (Cluster) – Body of the HTTP request.

• namespace (str) – namespace in which the Cluster will be updated.

Returns Body of the HTTP response.

Return type Cluster

150 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

delete_application(namespace, name)
Deletes the specified Application.

Parameters

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

Returns Body of the HTTP response.

Return type Application

delete_cluster(namespace, name)
Deletes the specified Cluster.

Parameters

• namespace (str) – namespace in which the Cluster will be updated.

• name (str) – name of the Cluster.

Returns Body of the HTTP response.

Return type Cluster

list_all_applications()
Lists all Applications.

Returns Body of the HTTP response.

Return type ApplicationList

list_all_clusters()
Lists all Clusters.

Returns Body of the HTTP response.

Return type ClusterList

list_applications(namespace)
Lists the Applications in the namespace.

Parameters namespace (str) – namespace in which the Application will be updated.

Returns Body of the HTTP response.

Return type ApplicationList

list_clusters(namespace)
Lists the Clusters in the namespace.

Parameters namespace (str) – namespace in which the Cluster will be updated.

Returns Body of the HTTP response.

Return type ClusterList

read_application(namespace, name)
Reads the specified Application.

Parameters

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

Returns Body of the HTTP response.

4.15. Krake Reference 151

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Return type Application

read_cluster(namespace, name)
Reads the specified Cluster.

Parameters

• namespace (str) – namespace in which the Cluster will be updated.

• name (str) – name of the Cluster.

Returns Body of the HTTP response.

Return type Cluster

update_application(body, namespace, name)
Updates the specified Application.

Parameters

• body (Application) – Body of the HTTP request.

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

Returns Body of the HTTP response.

Return type Application

update_application_binding(body, namespace, name)
Updates the specified Application.

Parameters

• body (ClusterBinding) – Body of the HTTP request.

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

Returns Body of the HTTP response.

Return type Application

update_application_complete(body, namespace, name)
Updates the specified Application.

Parameters

• body (ApplicationComplete) – Body of the HTTP request.

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

Returns Body of the HTTP response.

Return type Application

update_application_shutdown(body, namespace, name)
Updates the specified Application.

Parameters

• body (ApplicationShutdown) – Body of the HTTP request.

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

152 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Returns Body of the HTTP response.

Return type Application

update_application_status(body, namespace, name)
Updates the specified Application.

Parameters

• body (Application) – Body of the HTTP request.

• namespace (str) – namespace in which the Application will be updated.

• name (str) – name of the Application.

Returns Body of the HTTP response.

Return type Application

update_cluster(body, namespace, name)
Updates the specified Cluster.

Parameters

• body (Cluster) – Body of the HTTP request.

• namespace (str) – namespace in which the Cluster will be updated.

• name (str) – name of the Cluster.

Returns Body of the HTTP response.

Return type Cluster

update_cluster_binding(body, namespace, name)
Update the specified Cluster.

Parameters

• body (CloudBinding) – Body of the HTTP request.

• namespace (str) – namespace in which the Cluster will be updated.

• name (str) – name of the Cluster.

Returns Body of the HTTP response.

Return type Cluster

update_cluster_status(body, namespace, name)
Updates the specified Cluster.

Parameters

• body (Cluster) – Body of the HTTP request.

• namespace (str) – namespace in which the Cluster will be updated.

• name (str) – name of the Cluster.

Returns Body of the HTTP response.

Return type Cluster

watch_all_applications(heartbeat=None)
Generates a watcher for all Applications.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds.

4.15. Krake Reference 153

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

Returns Body of the HTTP response.

Return type ApplicationList

watch_all_clusters(heartbeat=None)
Generates a watcher for all Clusters.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds.

Returns Body of the HTTP response.

Return type ClusterList

watch_applications(namespace, heartbeat=None)
Generates a watcher for the Applications in the namespace.

Parameters

• namespace (str) – namespace in which the Application will be updated.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds.

Returns Body of the HTTP response.

Return type ApplicationList

watch_clusters(namespace, heartbeat=None)
Generates a watcher for the Clusters in the namespace.

Parameters

• namespace (str) – namespace in which the Cluster will be updated.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds.

Returns Body of the HTTP response.

Return type ClusterList

class krake.client.openstack.OpenStackApi(client)
Bases: krake.client.ApiClient

Openstack API client

Example

from krake.client import Client

with Client(url="http://localhost:8080") as client:
openstack_api = OpenStackApi(client)

Parameters client (krake.client.Client) – API client for accessing the Krake HTTP
API

create_magnum_cluster(body, namespace)
Creates the specified MagnumCluster.

Parameters

• body (MagnumCluster) – Body of the HTTP request.

154 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

• namespace (str) – namespace in which the MagnumCluster will be updated.

Returns Body of the HTTP response.

Return type MagnumCluster

create_project(body, namespace)
Creates the specified Project.

Parameters

• body (Project) – Body of the HTTP request.

• namespace (str) – namespace in which the Project will be updated.

Returns Body of the HTTP response.

Return type Project

delete_magnum_cluster(namespace, name)
Deletes the specified MagnumCluster.

Parameters

• namespace (str) – namespace in which the MagnumCluster will be updated.

• name (str) – name of the MagnumCluster.

Returns Body of the HTTP response.

Return type MagnumCluster

delete_project(namespace, name)
Deletes the specified Project.

Parameters

• namespace (str) – namespace in which the Project will be updated.

• name (str) – name of the Project.

Returns Body of the HTTP response.

Return type Project

list_all_magnum_clusters()
Lists all MagnumClusters.

Returns Body of the HTTP response.

Return type MagnumClusterList

list_all_projects()
Lists all Projects.

Returns Body of the HTTP response.

Return type ProjectList

list_magnum_clusters(namespace)
Lists the MagnumClusters in the namespace.

Parameters namespace (str) – namespace in which the MagnumCluster will be updated.

Returns Body of the HTTP response.

Return type MagnumClusterList

4.15. Krake Reference 155

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

list_projects(namespace)
Lists the Projects in the namespace.

Parameters namespace (str) – namespace in which the Project will be updated.

Returns Body of the HTTP response.

Return type ProjectList

read_magnum_cluster(namespace, name)
Reads the specified MagnumCluster.

Parameters

• namespace (str) – namespace in which the MagnumCluster will be updated.

• name (str) – name of the MagnumCluster.

Returns Body of the HTTP response.

Return type MagnumCluster

read_project(namespace, name)
Reads the specified Project.

Parameters

• namespace (str) – namespace in which the Project will be updated.

• name (str) – name of the Project.

Returns Body of the HTTP response.

Return type Project

update_magnum_cluster(body, namespace, name)
Updates the specified MagnumCluster.

Parameters

• body (MagnumCluster) – Body of the HTTP request.

• namespace (str) – namespace in which the MagnumCluster will be updated.

• name (str) – name of the MagnumCluster.

Returns Body of the HTTP response.

Return type MagnumCluster

update_magnum_cluster_binding(body, namespace, name)
Updates the specified MagnumCluster.

Parameters

• body (MagnumClusterBinding) – Body of the HTTP request.

• namespace (str) – namespace in which the MagnumCluster will be updated.

• name (str) – name of the MagnumCluster.

Returns Body of the HTTP response.

Return type MagnumCluster

update_magnum_cluster_status(body, namespace, name)
Updates the specified MagnumCluster.

Parameters

156 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

• body (MagnumCluster) – Body of the HTTP request.

• namespace (str) – namespace in which the MagnumCluster will be updated.

• name (str) – name of the MagnumCluster.

Returns Body of the HTTP response.

Return type MagnumCluster

update_project(body, namespace, name)
Updates the specified Project.

Parameters

• body (Project) – Body of the HTTP request.

• namespace (str) – namespace in which the Project will be updated.

• name (str) – name of the Project.

Returns Body of the HTTP response.

Return type Project

update_project_status(body, namespace, name)
Updates the specified Project.

Parameters

• body (Project) – Body of the HTTP request.

• namespace (str) – namespace in which the Project will be updated.

• name (str) – name of the Project.

Returns Body of the HTTP response.

Return type Project

watch_all_magnum_clusters(heartbeat=None)
Generates a watcher for all MagnumClusters.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type MagnumClusterList

watch_all_projects(heartbeat=None)
Generates a watcher for all Projects.

Parameters heartbeat (int) – Number of seconds after which the server sends a heartbeat
in form of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type ProjectList

watch_magnum_clusters(namespace, heartbeat=None)
Generates a watcher for the MagnumClusters in the namespace.

Parameters

• namespace (str) – namespace in which the MagnumCluster will be updated.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

4.15. Krake Reference 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

Returns Body of the HTTP response.

Return type MagnumClusterList

watch_projects(namespace, heartbeat=None)
Generates a watcher for the Projects in the namespace.

Parameters

• namespace (str) – namespace in which the Project will be updated.

• heartbeat (int) – Number of seconds after which the server sends a heartbeat in form
of an empty newline. Passing 0 disables the heartbeat. Default: 10 seconds

Returns Body of the HTTP response.

Return type ProjectList

4.15.5 Controllers

This module comprises Krake controllers responsible for watching API resources and transferring the state of related
real-world resources to the desired state specified in the API. Controllers can be written in any language and with every
technique. This module provides basic functionality and paradigms to implement a simple “control loop mechanism”
in Python.

class krake.controller.BurstWindow(name, burst_time, max_retry=0, loop=None)
Bases: object

Context manager that can be used to check the time arbitrary code took to run. This arbitrary code should be
something that needs to run indefinitely. If this code fails too quickly, it is not restarted.

The criteria are as follows: every max_retry times, if the average running time of the task is more than the
burst_time, the task is considered savable and the context manager is exited. If not, an exception will be
raised.

window = BurstWindow("my_task", 10, max_retry=3)

while True: # use any kind of loop
with window:

code to retry
...

Parameters

• name (str) – the name of the background task (for debugging purposes).

• burst_time (float) – maximal accepted average time for a retried task.

• max_retry (int, optional) – number of times the task should be retried before
testing the burst time. If 0, the task will be retried indefinitely, without looking for
attr:burst_time.

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

__exit__(*exc)
After the given number of tries, raise an exception if the content of the context manager failed too fast.

Raises RuntimeError – if a background task keep on failing more regularly than what the
burst time allows.

158 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/exceptions.html#RuntimeError

Krake, Release 1.0.0

class krake.controller.Controller(api_endpoint, loop=None, ssl_context=None, debounce=0)
Bases: object

Base class for Krake controllers providing basic functionality for watching and enqueuing API resources.

The basic workflow is as follows: the controller holds several background tasks. The API resources are watched
by a Reflector, which calls a handler on each received state of a resource. Any received new state is put into
a WorkQueue. Multiple workers consume this queue. Workers are responsible for doing the actual state
transitions. The work queue ensures that a resource is processed by one worker at a time (strict sequential). The
status of the real world resources is monitored by an Observer (another background task).

However, this workflow is just a possibility. By modifying __init__() (or other functions), it is possible to
add other queues, change the workers at will, add several Reflector or Observer, create additional background
tasks. . .

Parameters

• api_endpoint (str) – URL to the API

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

• ssl_context (ssl.SSLContext, optional) – if given, this context will be used
to communicate with the API endpoint.

• debounce (float, optional) – value of the debounce for the WorkQueue.

cleanup()
Unregister all background tasks that are attributes.

create_endpoint(api_endpoint)
Ensure the scheme (HTTP/HTTPS) of the endpoint to connect to the API, depending on the existence of a
given SSL context.

Parameters api_endpoint (str) – the given API endpoint.

Returns the final endpoint with the right scheme.

Return type str

prepare(client)
Start all API clients that the controller will be using. Create all necessary coroutines and register them as
background tasks that will be started by the Controller.

Parameters client (krake.client.Client) – the base client to use for the API client
to connect to the API.

register_task(corofactory, name=None)

Add a coroutine to the list of task that will be run in the background of the Controller.

Parameters

• corofactory (coroutine) – the coroutine that will be used as task. It must be run-
ning indefinitely and not catch asyncio.CancelledError.

• name (str, optional) – the name of the background task, for logging purposes.

retry(coro, name=”)
Start a background task. If the task fails not too regularly, restart it A BurstWindow is used to decide if
the task should be restarted.

Parameters

4.15. Krake Reference 159

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.CancelledError
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

• coro (coroutine) – the background task to try to restart.

• name (str) – the name of the background task (for debugging purposes).

Raises RuntimeError – if a background task keep on failing more regularly than what the
burst time allows.

run()
Start at once all the registered background tasks with the retry logic.

simple_on_receive(resource, condition=<class ’bool’>)
Example of a resource receiving handler, that accepts a resource under conditions, and if they are met,
add the resource to the queue. When listing values, you get a Resource, while when watching, you get an
Event.

Parameters

• resource (krake.data.serializable.Serializable) – a resource received
by listing.

• condition (callable, optional) – a condition to accept the given resource. The
signature should be (resource) -> bool.

exception krake.controller.ControllerError(message)
Bases: Exception

Base class for exceptions during handling of a resource.

__str__()
Custom error message for exception

class krake.controller.Executor(controller, loop=None, catch_signals=True)
Bases: object

Component used to encapsulate the Controller. It takes care of starting the Controller, and handles all logic not
directly dependent to the Controller, such as the handlers for the UNIX signals.

It implements the asynchronous context manager protocol. The controller itself can be awaited. The “await”
call blocks until the Controller terminates.

executor = Executor(controller)
async with executor:

await executor

Parameters

• controller (krake.controller.Controller) – the controller that the executor
is tasked with starting.

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

• catch_signals (bool, optional) – if True, the Executor will add handlers to catch
killing signals in order to stop the Controller and the Executor gracefully.

__aenter__()
Create the signal handlers and start the Controller as background task.

__aexit__(*exc)
Wait for the managed controller to be finished and cleanup.

stop()
Called as signal handler. Stop the Controller managed by the instance.

160 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

class krake.controller.Observer(resource, on_res_update, time_step=1)
Bases: object

Component used to watch the actual status of one instance of any resource.

Parameters

• resource – the instance of a resource that the Observer has to watch.

• on_res_update (coroutine) – a coroutine called when a resource’s actual sta-
tus differs from the status sent by the database. Its signature is: (resource) ->
updated_resource. updated_resource is the instance of the resource that is up-
to-date with the API. The Observer internal instance of the resource to observe will be
updated. If the API cannot be contacted, None can be returned. In this case the internal
instance of the Observer will not be updated.

• time_step (int, optional) – how frequently the Observer should watch the actual
status of the resources.

observe_resource()
Update the watched resource if its status is different from the status observed. The status sent for the
update is the observed one.

poll_resource()
Fetch the current status of the watched resource.

Returns

Return type krake.data.core.Status

run()
Start the observing process indefinitely, with the Observer time step.

class krake.controller.Reflector(listing, watching, on_list=None, on_add=None,
on_update=None, on_delete=None, resource_plural=None,
loop=None)

Bases: object

Component used to contact the API, fetch resources and handle disconnections.

Parameters

• listing (coroutine) – the coroutine used to get the list of resources currently stored
by the API. Its signature is: () -> <Resource>List.

• watching (coroutine) – the coroutine used to watch updates on the resources, as sent
by the API. Its signature is: () -> watching object. This watching object should
be able to be used as context manager, and as generator.

• on_list (coroutine) – the coroutine called when listing all resources with the fetched
resources as parameter. Its signature is: (resource) -> None.

• on_add (coroutine, optional) – the coroutine called during watch, when an
ADDED event has been received. Its signature is: (resource) -> None.

• on_update (coroutine, optional) – the coroutine called during watch, when a
MODIFIED event has been received. Its signature is: (resource) -> None.

• on_delete (coroutine, optional) – the coroutine called during watch, when a
DELETED event has been received. Its signature is: (resource) -> None.

• resource_plural (str, optional) – name of the resource that the reflector is
monitoring. For logging purpose. Default is "resources"

4.15. Krake Reference 161

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

__call__(min_interval=2)
Start the Reflector. Encapsulate the connections with a retry logic, as disconnections are expected. If any
other kind of error occurs, they are not swallowed.

Between two connection attempts, the connection will be retried later with a delay. If the connection fails
to fast, the delay will be increased, to wait for the API to be ready. If the connection succeeded for a certain
interval, the value of the delay is reset.

Parameters min_interval (int, optional) – if the connection was kept longer than
this value, the delay is reset to the base value, as it is considered that a connection was
possible.

list_and_watch()
Start the given list and watch coroutines.

list_resource()
Pass each resource returned by the current instance’s listing function as parameter to the receiving function.

watch_resource(watcher)
Pass each resource returned by the current instance’s watching object as parameter to the event receiving
functions.

Parameters watcher – an object that returns a new event every time an update on a resource
occurs

class krake.controller.WorkQueue(maxsize=0, debounce=0, loop=None)
Bases: object

Simple asynchronous work queue.

The key manages a set of key-value pairs. The queue guarantees strict sequential processing of keys: A key-
value pair retrieved via get() is not returned via get() again until done() with the corresponding key
is called, even if a new key-value pair with the corresponding key was put into the queue during the time of
processing.

Parameters

• maxsize (int, optional) – Maximal number of items in the queue before put()
blocks. Defaults to 0 which means the size is infinite

• debounce (float) – time in second for the debouncing of the values. A number higher
than 0 means that the queue will wait the given time before giving a value. If a newer value
is received, this time is reset.

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used

dirty holds the last known value of a key i.e. the next value which will be given by the get() method.

timers holds the current debounce coroutine for a key. Either this coroutine is canceled (if a new value for a
key is given to the WorkQueue through the meth:put) or the value is added to the dirty dictionary.

active ensures that a key isn’t added twice to the queue. Keys are added to this set when they are first added
to the dirty dictionary, and are removed from the set when the Worker calls the done() method.

Todo:

• Implement rate limiting and delays

162 Chapter 4. Developer Documentation

https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop

Krake, Release 1.0.0

cancel(key)
Cancel the corresponding debounce coroutine for the given key. An attempt to cancel the coroutine for a
key which was not inserted into the queue does not raise any error, and is simply ignored.

Parameters key – Key that identifies the value

close()
Cancel all pending debounce timers.

done(key)
Called by the Worker to notify that the work on the given key is done. This method first removes the key
from the active set, and then adds this key to the set if a new value has arrived.

Parameters key – Key that used to identity the value

empty()
Check if the queue is empty

Returns bool: True if there are no dirty keys

full()
Check if the queue is full

Returns True if the queue is full

Return type bool

get()
Retrieve a key-value pair from the queue.

The queue will not return this key as long as done() is not called with this key.

Returns (key, value) tuple

put(key, value, delay=None)
Put a new key-value pair into the queue.

Parameters

• key – Key that used to identify the value

• value – New value that is associated with the key

• delay (float, optional) – Number of seconds the put should be delayed. If None
is given, debounce will be used.

size()
Returns the number of keys marked as “dirty”

Returns Number of dirty keys in the queue

Return type int

krake.controller.create_ssl_context(tls_config)
From a certificate, create an SSL Context that can be used on the client side for communicating with a Server.

Parameters tls_config (krake.data.config.TlsClientConfiguration) – the
“tls” configuration part of a controller.

Returns a default SSL Context tweaked with the given certificate elements

Return type ssl.SSLContext

krake.controller.joint(*aws, loop=None)
Start several coroutines together. Ensure that if one stops, all others are cancelled as well.

4.15. Krake Reference 163

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ssl.html#ssl.SSLContext

Krake, Release 1.0.0

FIXME: using asyncio.gather, if an error occurs in one of the “gathered” task, all the tasks
are not necessarily stopped. @see https://stackoverflow.com/questions/59073556/
how-to-cancel-all-remaining-tasks-in-gather-if-one-fails # noqa

Parameters

• aws (Awaitable) – a list of await-ables to start concurrently.

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

krake.controller.run(controller)
Start the controller using an executor.

Parameters controller (krake.controller.Controller) – the controller to start

krake.controller.sigmoid_delay(retries, maximum=60.0, steepness=0.75, midpoint=10.0,
base=1.0)

Compute a waiting time (delay) depending on the number of retries already performed. The computing function
is a sigmoid.

Parameters

• retries (int) – the number of attempts that happened already.

• maximum (float) – the maximum delay that can be attained. Maximum of the sigmoid.

• steepness (float) – how fast the delay increases. Steepness of the sigmoid.

• midpoint (float) – number of retries to reach the delay between maximum and base.
Midpoint of the sigmoid.

• base (float) – minimum value for the delay.

Returns the computed next delay.

Return type float

Controller Kubernetes Application

Module comprises Krake Kubernetes application controller logic.

class krake.controller.kubernetes.application.KubernetesApplicationController(api_endpoint,
worker_count=10,
loop=None,
ssl_context=None,
de-
bounce=0,
hooks=None,
time_step=2)

Bases: krake.controller.Controller

Controller responsible for krake.data.kubernetes.Application resources. The controller manages
Application resources in “SCHEDULED” and “DELETING” state.

kubernetes_api
Krake internal API to connect to the “kubernetes” API of Krake.

Type KubernetesApi

application_reflector
reflector for the Application resource of the

164 Chapter 4. Developer Documentation

https://stackoverflow.com/questions/59073556/how-to-cancel-all-remaining-tasks-in-gather-if-one-fails
https://stackoverflow.com/questions/59073556/how-to-cancel-all-remaining-tasks-in-gather-if-one-fails
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Krake, Release 1.0.0

Type Reflector

"kubernetes" API of Krake.

worker_count
the amount of worker function that should be run as background tasks.

Type int

hooks
configuration to be used by the hooks supported by the controller.

Type krake.data.config.HooksConfiguration

observer_time_step
for the Observers: the number of seconds between two observations of the actual resource.

Type float

observers
mapping of all Application resource’ UID to their respective Observer and task responsible for the Ob-
server. The signature is: <uid> --> <observer>, <reference_to_observer's_task>.

Type dict[str, (Observer, Coroutine)]

Parameters

• api_endpoint (str) – URL to the API

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

• ssl_context (ssl.SSLContext, optional) – if given, this context will be used
to communicate with the API endpoint.

• debounce (float, optional) – value of the debounce for the WorkQueue.

• worker_count (int, optional) – the amount of worker function that should be run
as background tasks.

• time_step (float, optional) – for the Observers: the number of seconds between
two observations of the actual resource.

check_external_endpoint()
Ensure the scheme in the external endpoint (if provided) is matching the scheme used by the Krake API
(“https” or “http” if TLS is enabled or disabled respectively).

If they are not, a warning is logged and the scheme is replaced in the endpoint.

cleanup()
Unregister all background tasks that are attributes.

handle_resource(run_once=False)
Infinite loop which fetches and hand over the resources to the right coroutine. The specific exceptions and
error handling have to be added here.

This function is meant to be run as background task. Lock the handling of a resource with the lock
attribute.

Parameters run_once (bool, optional) – if True, the function only handles one re-
source, then stops. Otherwise, continue to handle each new resource on the queue indefi-
nitely.

4.15. Krake Reference 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

list_app(app)
Accept the Applications that need to be managed by the Controller on listing them at startup. Starts the
observer for the Applications with actual resources.

Parameters app (krake.data.kubernetes.Application) – the Application to ac-
cept or not.

on_status_update(app)
Called when an Observer noticed a difference of the status of an application. Request an update of the
status on the API.

Parameters

• app (krake.data.kubernetes.Application) – the Application whose

• has been updated or (status) –

Returns the updated Application sent by the API.

Return type krake.data.kubernetes.Application

prepare(client)
Start all API clients that the controller will be using. Create all necessary coroutines and register them as
background tasks that will be started by the Controller.

Parameters client (krake.client.Client) – the base client to use for the API client
to connect to the API.

static scheduled_or_deleting(app)
Check if a resource should be accepted or not by the Controller to be handled.

Parameters app (krake.data.kubernetes.Application) – the Application to
check.

Returns True if the Application should be handled, False otherwise.

Return type bool

class krake.controller.kubernetes.application.KubernetesClient(kubeconfig, cus-
tom_resources=None)

Bases: object

Client for connecting to a Kubernetes cluster. This client:

• prepares the connection based on the information stored in the cluster’s kubeconfig file;

• prepares the connection to a custom resource’s API, if a Kubernetes resource to be managed relies on a
Kubernetes custom resource;

• offers two methods: - apply(): apply a manifest to create or update a resource - delete(): delete a
resource.

The client can be used as a context manager, with the Kubernetes client being deleted when leaving the context.

kubeconfig
provided kubeconfig file, to connect to the cluster.

Type dict

custom_resources
name of all custom resources that are available on the current cluster.

Type list[str]

166 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

resource_apis
mapping of a Kubernetes’s resource name to the API object of the Kubernetes client which man-
ages it (e.g. a Pod belongs to the “CoreV1” API of Kubernetes, so the mapping would be “Pod” ->
<client.CoreV1Api_instance>), wrapped in an ApiAdapter instance.

Type dict

api_client
base API object created by the Kubernetes API library.

Type ApiClient

apply(resource)
Apply the given resource on the cluster using its internal data as reference.

Parameters resource (dict) – the resource to create, as a manifest file translated in dict.

Returns response from the cluster as given by the Kubernetes client.

Return type object

custom_resource_apis
Determine custom resource apis for given cluster.

If given cluster supports custom resources, Krake determines apis from custom resource definitions.

The custom resources apis are requested only once and then are cached by cached property decorator. This
is an advantage in case of the application contains multiple Kubernetes custom resources with the same
kind, but with the different content, see example.

Example:

apiVersion: stable.example.com/v1
kind: CRD
metadata:

name: cdr_1
spec:

crdSpec: spec_1

apiVersion: stable.example.com/v1
kind: CRD
metadata:

name: cdr_2
spec:

crdSpec: spec_2

Returns Custom resource apis

Return type dict

Raises InvalidCustomResourceDefinitionError – If the request for the custom re-
source definition failed.

default_namespace
From the kubeconfig file, get the default Kubernetes namespace where the resources will be created. If no
namespace is specified, “default” will be used.

Returns the default namespace in the kubeconfig file.

Return type str

4.15. Krake Reference 167

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

delete(resource)
Delete the given resource on the cluster using its internal data as reference.

Parameters resource (dict) – the resource to delete, as a manifest file translated in dict.

Returns

response from the cluster as given by the Kubernetes client.

Return type kubernetes_asyncio.client.models.v1_status.V1Status

Raises

• InvalidManifestError – if the kind or name is not present in the resource.

• ApiException – by the Kubernetes API in case of malformed content or error on the
cluster’s side.

get_immutables(resource)
From a resource manifest, look for the group, version, kind, name and namespace of the resource.

If the latter is not present, the default namespace of the cluster is used instead.

Parameters resource (dict[str, Any]) – the manifest file translated in dict of the re-
source from which the fields will be extracted.

Returns

the group, version, kind, name and namespace of the resource.

Return type (str, str, str, str, str)

Raises InvalidResourceError – if the apiVersion, kind or the name is not present.

Raises

• InvalidManifestError – if the apiVersion, kind or name is not present in the re-
source.

• ApiException – by the Kubernetes API in case of malformed content or error on the
cluster’s side.

get_resource_api(group, version, kind)

Get the Kubernetes API corresponding to the given group and version. If not found, look for it into
the supported custom resources for the cluster.

Parameters

• group (str) – group of the Kubernetes resource, for which the Kubernetes API should
be retrieved.

• version (str) – version of the Kubernetes resource, for which the Kubernetes API
should be retrieved.

• kind (str) – name of the Kubernetes resource, for which the Kubernetes API should be
retrieved.

Returns the API adapter to use for this resource.

Return type ApiAdapter

Raises UnsupportedResourceError – if the group and version given are not supported
by the Controller, and given kind is not a supported custom resource.

168 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

static log_response(response, kind, action=None)
Utility function to parse a response from the Kubernetes cluster and log its content.

Parameters

• response (object) – the response, as handed over by the Kubernetes client library.

• kind (str) – kind of the original resource that was managed (may be different from the
kind of the response).

• action (str) – the type of action performed to get this response.

shutdown(app)
Gracefully shutdown the given application on the cluster by calling the apps exposed shutdown address.

Parameters () (app) – the app to gracefully shutdown.

Returns

response from the cluster as given by the Kubernetes client.

Return type kubernetes_asyncio.client.models.v1_status.V1Status

Raises

• InvalidManifestError – if the kind or name is not present in the resource.

• ApiException – by the Kubernetes API in case of malformed content or error on the
cluster’s side.

krake.controller.kubernetes.application.register_service(app, cluster, resource, re-
sponse)

Register endpoint of Kubernetes Service object on creation and update.

Parameters

• app (krake.data.kubernetes.Application) – Application the service belongs
to

• cluster (krake.data.kubernetes.Cluster) – The cluster on which the appli-
cation is running

• resource (dict) – Kubernetes object description as specified in the specification of the
application.

• response (kubernetes_asyncio.client.V1Service) – Response of the Ku-
bernetes API

krake.controller.kubernetes.application.unregister_service(app, resource,
**kwargs)

Unregister endpoint of Kubernetes Service object on deletion.

Parameters

• app (krake.data.kubernetes.Application) – Application the service belongs
to

• resource (dict) – Kubernetes object description as specified in the specification of the
application.

class krake.controller.kubernetes.application.KubernetesApplicationObserver(cluster,
re-
source,
on_res_update,
time_step=2)

Bases: krake.controller.Observer

4.15. Krake Reference 169

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Krake, Release 1.0.0

Observer specific for Kubernetes Applications. One observer is created for each Application managed by the
Controller, but not one per Kubernetes resource (Deployment, Service. . .). If several resources are defined by
an Application, they are all monitored by the same observer.

The observer gets the actual status of the resources on the cluster using the Kubernetes API, and compare it to
the status stored in the API.

The observer is:

• started at initial Krake resource creation;

• deleted when a resource needs to be updated, then started again when it is done;

• simply deleted on resource deletion.

Parameters

• cluster (krake.data.kubernetes.Cluster) – the cluster on which the observed
Application is created.

• resource (krake.data.kubernetes.Application) – the application that will
be observed.

• on_res_update (coroutine) – a coroutine called when a resource’s actual sta-
tus differs from the status sent by the database. Its signature is: (resource) ->
updated_resource. updated_resource is the instance of the resource that is up-
to-date with the API. The Observer internal instance of the resource to observe will be
updated. If the API cannot be contacted, None can be returned. In this case the internal
instance of the Observer will not be updated.

• time_step (int, optional) – how frequently the Observer should watch the actual
status of the resources.

poll_resource()
Fetch the current status of the Application monitored by the Observer.

Returns

the status object created using information from the real world Applications resource.

Return type krake.data.core.Status

krake.controller.kubernetes.application.get_kubernetes_resource_idx(manifest,
resource,
check_namespace=False)

Get a resource identified by its resource api, kind and name, from a manifest file

Parameters

• manifest (list[dict]) – Manifest file to get the resource from

• resource (dict[str, dict|list|str]) – resource to find

• check_namespace (bool) – Flag to decide, if the namespace should be checked

Raises IndexError – If the resource is not present in the manifest

Returns Position of the resource in the manifest

Return type int

class krake.controller.kubernetes.application.HookType
Bases: enum.Enum

An enumeration.

170 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum

Krake, Release 1.0.0

krake.controller.kubernetes.application.update_last_applied_manifest_from_resp(app,
re-
sponse,
**kwargs)

Hook run after the creation or update of an application in order to update the status.last_applied_manifest using
the k8s response.

Parameters

• app (krake.data.kubernetes.Application) – Application the service belongs
to

• response (kubernetes_asyncio.client.V1Status) – Response of the Kuber-
netes API

After a Kubernetes resource has been created/updated, the status.last_applied_manifest has to be updated. All
fields already initialized (either from the mangling of spec.manifest, or by a previous call to this function)
should be left untouched. Only observed fields which are not present in status.last_applied_manifest should be
initialized.

krake.controller.kubernetes.application.update_last_observed_manifest_from_resp(app,
re-
sponse,
**kwargs)

Handler to run after the creation or update of a Kubernetes resource to update the last_observed_manifest from
the response of the Kubernetes API.

Parameters

• app (krake.data.kubernetes.Application) – Application the service belongs
to

• response (kubernetes_asyncio.client.V1Service) – Response of the Ku-
bernetes API

The target last_observed_manifest holds the value of all observed fields plus the special control dictionaries for
the list length

Controller Kubernetes Cluster

Module comprises Krake Kubernetes cluster controller logic.

class krake.controller.kubernetes.cluster.KubernetesClusterController(api_endpoint,
worker_count=10,
loop=None,
ssl_context=None,
de-
bounce=0,
time_step=2)

Bases: krake.controller.Controller

Controller responsible for krake.data.kubernetes.Application and krake.data.
kubernetes.Cluster resources. The controller manages Application resources in “SCHEDULED”
and “DELETING” state and Clusters in any state.

kubernetes_api
Krake internal API to connect to the “kubernetes” API of Krake.

Type KubernetesApi

4.15. Krake Reference 171

Krake, Release 1.0.0

cluster_reflector
reflector for the Cluster resource of the

Type Reflector

"kubernetes" API of Krake.

worker_count
the amount of worker function that should be run as background tasks.

Type int

observer_time_step
for the Observers: the number of seconds between two observations of the actual resource.

Type float

observers
mapping of all Application or Cluster resource’ UID to their respective Observer and
task responsible for the Observer. The signature is: <uid> --> <observer>,
<reference_to_observer's_task>.

Type dict[str, (Observer, Coroutine)]

Parameters

• api_endpoint (str) – URL to the API

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

• ssl_context (ssl.SSLContext, optional) – if given, this context will be used
to communicate with the API endpoint.

• debounce (float, optional) – value of the debounce for the WorkQueue.

• worker_count (int, optional) – the amount of worker function that should be run
as background tasks.

• time_step (float, optional) – for the Observers: the number of seconds between
two observations of the actual resource.

static accept_accessible(cluster)
Check if a resource should be accepted or not by the Controller.

Parameters cluster (krake.data.kubernetes.Cluster) – the Cluster to check.

Returns True if the Cluster should be handled, False otherwise.

Return type bool

cleanup()
Unregister all background tasks that are attributes.

handle_resource(run_once=False)
Infinite loop which fetches and hand over the resources to the right coroutine. The specific exceptions and
error handling have to be added here.

This function is meant to be run as background task. Lock the handling of a resource with the lock
attribute.

Parameters run_once (bool, optional) – if True, the function only handles one re-
source, then stops. Otherwise, continue to handle each new resource on the queue indefi-
nitely.

172 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

list_cluster(cluster)
Accept the Clusters that need to be managed by the Controller on listing them at startup. Starts the observer
for the Cluster.

Parameters cluster (krake.data.kubernetes.Cluster) – the cluster to accept or
not.

on_status_update(cluster)
Called when an Observer noticed a difference of the status of a resource. Request an update of the status
on the API.

Parameters

• cluster (krake.data.kubernetes.Cluster) – the Cluster whose status

• been updated. (has) –

Returns the updated Cluster sent by the API.

Return type krake.data.kubernetes.Cluster

prepare(client)
Start all API clients that the controller will be using. Create all necessary coroutines and register them as
background tasks that will be started by the Controller.

Parameters client (krake.client.Client) – the base client to use for the API client
to connect to the API.

krake.controller.kubernetes.cluster.register_service(app, cluster, resource, re-
sponse)

Register endpoint of Kubernetes Service object on creation and update.

Parameters

• app (krake.data.kubernetes.Application) – Application the service belongs
to

• cluster (krake.data.kubernetes.Cluster) – The cluster on which the appli-
cation is running

• resource (dict) – Kubernetes object description as specified in the specification of the
application.

• response (kubernetes_asyncio.client.V1Service) – Response of the Ku-
bernetes API

krake.controller.kubernetes.cluster.unregister_service(app, resource, **kwargs)
Unregister endpoint of Kubernetes Service object on deletion.

Parameters

• app (krake.data.kubernetes.Application) – Application the service belongs
to

• resource (dict) – Kubernetes object description as specified in the specification of the
application.

class krake.controller.kubernetes.cluster.KubernetesClusterObserver(resource,
on_res_update,
time_step=2)

Bases: krake.controller.Observer

Observer specific for Kubernetes Clusters. One observer is created for each Cluster managed by the Controller.

4.15. Krake Reference 173

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Krake, Release 1.0.0

The observer gets the actual status of the cluster using the Kubernetes API, and compare it to the status stored
in the API.

The observer is:

• started at initial Krake resource creation;

• deleted when a resource needs to be updated, then started again when it is done;

• simply deleted on resource deletion.

Parameters

• resource (krake.data.kubernetes.Cluster) – the cluster which will be ob-
served.

• on_res_update (coroutine) – a coroutine called when a resource’s actual sta-
tus differs from the status sent by the database. Its signature is: (resource) ->
updated_resource. updated_resource is the instance of the resource that is up-
to-date with the API. The Observer internal instance of the resource to observe will be
updated. If the API cannot be contacted, None can be returned. In this case the internal
instance of the Observer will not be updated.

• time_step (int, optional) – how frequently the Observer should watch the actual
status of the resources.

poll_resource()
Fetch the current status of the Cluster monitored by the Observer.

Note regarding exceptions handling: The current cluster status is fetched by poll_resource()
from its API. If the cluster API is shutting down the API server responds with a 503 (service unavail-
able, apiserver is shutting down) HTTP response which leads to the kubernetes client ApiException.
If the cluster’s API has been successfully shut down and there is an attempt to fetch cluster status, the
ClientConnectorError is raised instead. Therefore, both exceptions should be handled.

Returns

the status object created using information from the real world Cluster.

Return type krake.data.core.Status

class krake.controller.kubernetes.cluster.HookType
Bases: enum.Enum

An enumeration.

Controller Scheduler

Module comprises Krake scheduling logic of the Krake application.

class krake.controller.scheduler.Scheduler(api_endpoint, worker_count=10,
reschedule_after=60, stickiness=0.1,
ssl_context=None, debounce=0, loop=None)

Bases: krake.controller.Controller

The scheduler is a controller that receives all pending and updated applications and selects the “best” backend
for each one of them based on metrics of the backends and application specifications.

Parameters

174 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum

Krake, Release 1.0.0

• worker_count (int, optional) – the amount of worker function that should be run
as background tasks.

• reschedule_after (float, optional) – number of seconds after which a re-
source should be rescheduled.

• ssl_context (ssl.SSLContext, optional) – SSL context that should be used to
communicate with the API server.

• debounce (float, optional) – number of seconds the scheduler should wait before
it reacts to a state change.

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

cleanup()
Unregister all background tasks that are attributes.

prepare(client)
Start all API clients that the controller will be using. Create all necessary coroutines and register them as
background tasks that will be started by the Controller.

Parameters client (krake.client.Client) – the base client to use for the API client
to connect to the API.

Controller Garbage Collector

This module defines the Garbage Collector present as a background task on the API application. When a resource is
marked as deleted, the GC mark all its dependents as deleted. After cleanup is done by the respective Controller, the
gc handles the final deletion of resources.

Marking a resource as deleted (by setting the deleted timestamp of its metadata) is irreversible: if the garbage collector
receives such a resource, it will start the complete deletion process, with no further user involvement.

The configuration should have the following structure:

api_endpoint: http://localhost:8080
worker_count: 5
debounce: 1
tls:

enabled: false
client_ca: tmp/pki/ca.pem
client_cert: tmp/pki/system:gc.pem
client_key: tmp/pki/system:gc-key.pem

log:
...

exception krake.controller.gc.DependencyCycleException(resource, cycle, *args)
Bases: krake.controller.gc.DependencyException

Raised in case a cycle in the dependencies has been discovered while adding or updating a resource.

Parameters

• resource (krake.data.core.ResourceRef) – the resource added or updated that
triggered the exception.

• cycle (set) – the cycle of dependency relationships that has been discovered.

4.15. Krake Reference 175

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/stdtypes.html#set

Krake, Release 1.0.0

exception krake.controller.gc.DependencyException
Bases: Exception

Base class for dependency exceptions.

class krake.controller.gc.DependencyGraph
Bases: object

Representation of the dependencies of all Krake resources by an acyclic directed graph. This graph can be used
to get the dependents of any resource that the graph received.

If an instance of a resource A depends on a resource B, A will have B in its owner list. In this case, * A depends
on B * B is a dependency of A * A is a dependent of B

The nodes of the graph are krake.data.core.ResourceRef, created from the actual resources. The
edges are directed links from a dependency to its dependents.

krake.data.core.ResourceRef are used instead of the resource directly, as they are hashable and can
be used as key of a dictionary. Otherwise, we would need to make any newly added resource as hashable for the
sake of the dependency graph.

The actual resources are still referenced in the _resources. It allows the access to the actual owners of a
resource, not their krake.data.core.ResourceRef.

add_resource(resource, owners, check_cycles=True)
Add a resource and its dependencies relationships to the graph.

Parameters

• resource (krake.data.core.ResourceRef) – the resource to add to the graph.

• owners (list) – list of owners (dependencies) of the resource.

• check_cycles (bool, optional) – if False, does not check if adding the resource
creates a cycle, and simply add it.

get_direct_dependents(resource)
Get the dependents of a resource, but only the ones directly dependent, no recursion is performed.

Parameters resource (krake.data.core.ResourceRef) – the resource for which the
search will be performed.

Returns

the list of krake.data.core.ResourceRef to the dependents of the given re-
source (=that depends on the resource).

Return type list

remove_resource(resource, check_dependents=True)
If a resource has no dependent, remove it from the dependency graph, and from the dependents of other
resources.

Parameters

• resource (krake.data.core.ResourceRef) – the resource to remove.

• check_dependents (bool, optional) – if False, does not check if the resource
to remove has dependents, and simply remove it along with the dependents.

Raises ResourceWithDependentsException – if the resource to remove has depen-
dents.

update_resource(resource, owners)
Update the dependency relationships of a resource on the graph.

176 Chapter 4. Developer Documentation

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

Parameters

• resource (krake.data.core.ResourceRef) – the resource whose ownership
may need to be modified.

• owners (list) – list of owners (dependencies) of the resource.

class krake.controller.gc.GarbageCollector(api_endpoint, worker_count=10, loop=None,
ssl_context=None, debounce=0)

Bases: krake.controller.Controller

Controller responsible for marking the dependents of a resource as deleted, and for deleting all resources without
any finalizer.

Parameters

• api_endpoint (str) – URL to the API

• worker_count (int, optional) – the amount of worker function that should be run
as background tasks.

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

• ssl_context (ssl.SSLContext, optional) – if given, this context will be used
to communicate with the API endpoint.

• debounce (float, optional) – value of the debounce for the WorkQueue.

cleanup()
Unregister all background tasks that are attributes.

get_api_method(reference, verb)
Retrieve the client method of the API of the given resource to do the given action.

Parameters

• reference (any) – a resource or reference to a resource for which a method of its API
needs to be selected.

• verb (str) – the verb describing the action for which the method should be returned.

Returns

a method to perform the given action on the given resource (through its client).

Return type callable

handle_resource(run_once=False)
Infinite loop which fetches and hand over the resources to the right coroutine. This function is meant to be
run as background task.

Parameters run_once (bool, optional) – if True, the function only handles one re-
source, then stops. Otherwise, continue to handle each new resource on the queue indefi-
nitely.

static is_in_deletion(resource)
Check if a resource needs to be deleted or not.

Parameters resource (krake.data.serializable.ApiObject) – the resource to
check.

Returns True if the given resource is in deletion state, False otherwise.

Return type bool

4.15. Krake Reference 177

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

on_received_deleted(resource)
To be called when a resource is deleted on the API. Remove the resource from the dependency graph and
add its dependencies to the Worker queue.

Parameters resource (krake.data.serializable.ApiObject) – the deleted re-
source.

on_received_new(resource)
To be called when a resource is received for the first time by the garbage collector. Add the resource to the
dependency graph and handle the resource if accepted.

If a cycle is detected when adding the resource, all resources of the cycle are removed.

Parameters resource (krake.data.serializable.ApiObject) – the newly added
resource.

on_received_update(resource)
To be called when a resource is updated on the API. Update the resource on the dependency graph and
handle the resource if accepted.

If a cycle is detected when adding the resource, all resources of the cycle are removed.

Parameters resource (krake.data.serializable.ApiObject) – the updated re-
source.

prepare(client)
Start all API clients that the controller will be using. Create all necessary coroutines and register them as
background tasks that will be started by the Controller.

Parameters client (krake.client.Client) – the base client to use for the API client
to connect to the API.

resource_received(resource)
Core functionality of the garbage collector. Mark the given resource’s direct dependents as to be deleted,
or remove the deletion finalizer if the resource has no dependent.

Parameters resource (krake.data.serializable.ApiObject) – a resource in
deletion state.

exception krake.controller.gc.ResourceWithDependentsException(dependents,
*args)

Bases: krake.controller.gc.DependencyException

Raise when an attempt to remove a resource from the dependency graph implies removing a resource that has
still dependents, and thus should not be removed if the integrity of the dependency graph needs to be kept.

For instance: If B depends on A, A should be removed.

Parameters dependents (list) – The list of dependents that are now orphaned.

Controller Magnum

Module for Krake controller responsible for managing Magnum cluster resources and creating their respective Kuber-
netes cluster. It connects to the Magnum service of the Project on which a MagnumCluster has been scheduled.

python -m krake.controller.magnum --help

Configuration is loaded from the controllers.scheduler section:

178 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#list

Krake, Release 1.0.0

api_endpoint: http://localhost:8080
worker_count: 5
debounce: 1.0
poll_interval: 30

tls:
enabled: false
client_ca: tmp/pki/ca.pem
client_cert: tmp/pki/system:magnum.pem
client_key: tmp/pki/system:magnum-key.pem

log:
...

exception krake.controller.magnum.CreateFailed(message)
Bases: krake.controller.ControllerError

Raised in case the creation of a Magnum cluster failed.

exception krake.controller.magnum.DeleteFailed(message)
Bases: krake.controller.ControllerError

Raised in case the deletion of a Magnum cluster failed.

exception krake.controller.magnum.InvalidClusterTemplateType(message)
Bases: krake.controller.ControllerError

Raised in case the given Magnum template is not a template for a Kubernetes cluster.

class krake.controller.magnum.MagnumClusterController(*args, worker_count=5,
poll_interval=30, **kwargs)

Bases: krake.controller.Controller

The Magnum controller receives the MagnumCluster resources from the API and acts on it, by creating, updating
or deleting their actual cluster counterparts. It uses the OpenStack Magnum client for this purpose.

Parameters

• api_endpoint (str) – URL to the API

• loop (asyncio.AbstractEventLoop, optional) – Event loop that should be
used.

• ssl_context (ssl.SSLContext, optional) – if given, this context will be used
to communicate with the API endpoint.

• debounce (float, optional) – value of the debounce for the WorkQueue.

• worker_count (int, optional) – the amount of worker function that should be run
as background tasks.

• poll_interval (float) – time in second before two attempts to modify a Magnum
cluster (creation, deletion, update, change from FAILED state. . .).

cleanup()
Unregister all background tasks that are attributes.

consume(run_once=False)
Continuously retrieve new elements from the worker queue to be processed.

4.15. Krake Reference 179

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Krake, Release 1.0.0

Parameters run_once (bool, optional) – if True, the function only handles one re-
source, then stops. Otherwise, continue to handle each new resource on the queue indefi-
nitely.

create_magnum_client(cluster)
Create a client to communicate with the Magnum service API for the given Magnum cluster. The specifi-
cations defined in the OpenStack project of the cluster are used to create the client.

Parameters cluster (krake.data.openstack.MagnumCluster) – the cluster
whose project’s specifications will be used to connect to the Magnum service.

Returns

the Magnum client to use to connect to the Magnum service on the project of the given
Magnum cluster.

Return type MagnumV1Client

delete_magnum_cluster(cluster)
Initiate the deletion of the actual given Magnum cluster, and wait for its deletion. The finalizer specific to
the Magnum Controller is also removed from the Magnum cluster resource.

Parameters cluster (krake.data.openstack.MagnumCluster) – the Magnum
cluster that needs to be deleted.

on_creating(cluster, magnum)
Called when a Magnum cluster with the CREATING state needs reconciliation.

Watch over a Magnum cluster currently being created on its scheduled OpenStack project, and updates the
corresponding Kubernetes cluster created in the API.

As the Magnum cluster is in a stable state at the end, no further processing method is needed to return.

Parameters

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster
that needs to be processed.

• magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

on_pending(cluster, magnum)
Called when a Magnum cluster with the PENDING state needs reconciliation.

Initiate the creation of a Magnum cluster using the registered Magnum template, but does not ensure that
the creation succeeded.

Parameters

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster to
actually create on its scheduled OpenStack project.

• magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

Returns

the next function to be called, as the Magnum cluster changed its state. In this case,
the Magnum cluster has now the CREATING state, thus the function returned is
on_creating().

Return type callable

180 Chapter 4. Developer Documentation

https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

on_reconciling(cluster, magnum)
Called when a Magnum cluster with the RECONCILING state needs reconciliation.

Watch over a Magnum cluster already created on its scheduled OpenStack project, and updates the corre-
sponding Kubernetes cluster created in the API.

As the Magnum cluster is in a stable state at the end, no further processing method is needed to return.

Parameters

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster
that needs to be processed.

• magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

on_running(cluster, magnum)
Called when a Magnum cluster with the RUNNING state needs reconciliation.

If the Magnum cluster needs to be resized, initiate the resizing. Otherwise, updates the corresponding
Kubernetes cluster created in the API.

Parameters

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster
that needs to be processed.

• magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

Returns

the next function to be called, as the Magnum cluster changed its state. In the case of
resizing, the Magnum cluster has now the RECONCILING state, thus the function re-
turned is on_creating(). Otherwise, as the state is stable at the end, no further pro-
cessing is needed and None is returned.

Return type callable

prepare(client)
Start all API clients that the controller will be using. Create all necessary coroutines and register them as
background tasks that will be started by the Controller.

Parameters client (krake.client.Client) – the base client to use for the API client
to connect to the API.

process_cluster(cluster)
Process a Magnum cluster: if the given cluster is marked for deletion, delete the actual cluster. Otherwise,
start the reconciliation between a Magnum cluster spec and its state.

Handle any ControllerError or the supported OpenStack error that are raised during the processing.

Parameters cluster (krake.data.openstack.MagnumCluster) – the Magnum
cluster to process.

reconcile_kubernetes_resource(cluster, magnum)
Create or update the Krake resource of the Kubernetes cluster that was created from a given Magnum
cluster.

Parameters

• cluster (krake.data.openstack.MagnumCluster) – the Kubernetes cluster
will be created using the specifications of this Magnum cluster.

4.15. Krake Reference 181

Krake, Release 1.0.0

• magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

Raises ClientResponseError – when checking if the Kubernetes cluster resource already
exists, raise if any HTTP error except 404 is raised.

reconcile_magnum_cluster(cluster)
Depending on the state of the given Magnum cluster, start the rapprochement of the wanted state of the
cluster to the desired one.

Parameters cluster (krake.data.openstack.MagnumCluster) – the cluster
whose actual state will be modified to match the desired one.

wait_for_running(cluster, magnum)
Await for an actual Magnum cluster to be in a stable state, that means, when its creation or update is
finished.

Parameters

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster on
which an operation is performed that needs to be awaited.

• magnum (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service on the project.

Raises ControllerError – if the operation on the cluster failed, a corresponding error will
be raised (for instance CreateFailed in case the creation of the cluster failed).

exception krake.controller.magnum.ReconcileFailed(message)
Bases: krake.controller.ControllerError

Raised in case the update of a Magnum cluster failed.

krake.controller.magnum.concurrent(fn)
Decorator function to turn a synchronous function into an asynchronous coroutine that runs in another thread,
that can be awaited and thus does not block the main asyncio loop. It is particularly useful for synchronous tasks
which requires a long time to be run concurrently to the main asyncio loop.

Example

@concurrent
def my_function(args_1, arg2=value):

long synchronous processing...
return result

await my_function(value1, arg2=value2) # function run in another thread

Parameters fn (callable) – the function to run in parallel from the main loop.

Returns

decorator around the given function. The returned callable is an asyncio coroutine.

Return type callable

krake.controller.magnum.create_client_certificate(client, cluster, csr)
Create and get a certificate for the given Magnum cluster.

Parameters

182 Chapter 4. Developer Documentation

Krake, Release 1.0.0

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster for
which a kubeconfig file will be created.

• csr (str) – the certificate signing request (CSR) to use on the Magnum service for the
creation of the certificate.

Returns the generated certificate.

Return type str

krake.controller.magnum.create_magnum_cluster(client, cluster)
Create an actual Magnum cluster by connecting to the the Magnum service.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the cluster to create.

Returns the cluster created by the Magnum service.

Return type magnumclient.v1.clusters.Cluster

krake.controller.magnum.delete_magnum_cluster(client, cluster)
Delete the actual Magnum cluster that corresponds to the given resource.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the cluster to delete.

Returns the cluster deleted by the Magnum service.

Return type magnumclient.v1.clusters.Cluster

krake.controller.magnum.format_openstack_error(error)
Create a more readable error message using OpenStack specific errors.

Parameters error (BaseException) – the exception whose information is used to create a
message.

Returns the generated error message.

Return type str

krake.controller.magnum.generate_magnum_cluster_name(cluster)
Create a unique name for a Magnum cluster from its metadata. The name has the following structure:
“<namespace>-<name>-<random_lowercase_digit_string>”. Any special character that the Magnum service
would see as invalid will be replaced.

Parameters cluster (krake.data.openstack.MagnumCluster) – the cluster to use to
create a name.

Returns the name generated.

Return type str

krake.controller.magnum.make_csr(key_size=4096)
Generates a private key and corresponding certificate and certificate signing request.

Parameters key_size (int) – Length of private key in bits

4.15. Krake Reference 183

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#BaseException
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

Returns private key, certificate signing request (CSR)

Return type (str, str)

krake.controller.magnum.make_keystone_session(project)
Create an OpenStack Keystone session using the authentication information of the given project resource.

Parameters project (krake.data.openstack.Project) – the OpenStack project to use
for getting the credentials and endpoint.

Returns the Keystone session created.

Return type Session

krake.controller.magnum.make_kubeconfig(client, cluster)
Create a kubeconfig for the Kubernetes cluster associated with the given Magnum cluster. For this process, it
uses (non exhaustively) the name, address and certificates associated with it.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster for
which a kubeconfig will be created.

Returns the kubeconfig created, returned as a dictionary.

Return type dict

krake.controller.magnum.make_magnum_client(project)
Create a Magnum client to connect to the given OpenStack project.

Parameters project (krake.data.openstack.Project) – the project to connect to.

Returns

the client to connect to the Magnum service of the given project.

Return type MagnumV1Client

krake.controller.magnum.randstr(length=7)
Create a random string of lowercase and digit character of the given length.

Parameters length (int) – specifies how many characters should be present in the returned
string.

Returns the string randomly generated.

Return type str

krake.controller.magnum.read_ca_certificate(client, cluster)
Get the certificate authority used by the given Magnum cluster.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the Magnum cluster for
which the certificate authority will be retrieved.

Returns the certificate authority of the given cluster.

Return type str

184 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

krake.controller.magnum.read_magnum_cluster(client, cluster)
Read the actual information of the given Magnum cluster resource.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the resource whose actual
cluster state will be read.

Returns

the current information regarding the given Magnum cluster.

Return type magnumclient.v1.clusters.Cluster

krake.controller.magnum.read_magnum_cluster_template(client, cluster)
Get the actual template associated with the one specified in the given Magnum cluster resource.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the template given is the
one specified by this Magnum cluster.

Returns magnumclient.v1.cluster_templates.ClusterTemplate

krake.controller.magnum.resize_magnum_cluster(client, cluster)
Update the given Magnum cluster by changing its node count.

Parameters

• client (MagnumV1Client) – the Magnum client to use to connect to the Magnum
service.

• cluster (krake.data.openstack.MagnumCluster) – the cluster to resize.

Returns the cluster updated by the Magnum service.

Return type magnumclient.v1.clusters.Cluster

4.15.6 Data Abstraction

Data abstraction module for all REST resources used by the Krake API. This module provides common data definitions
for krake.api and krake.client.

The core functionality is provided by serializable providing a Python API for declarative definitions of data
models together with serializing and deserializing functionality.

Domain-specific models are defined in corresponding submodules, e.g. Kubernetes-related data models are defined in
kubernetes.

class krake.data.Key(template, attribute=None)
Bases: object

Etcd key template using the same syntax as Python’s standard format strings for parameters.

4.15. Krake Reference 185

https://docs.python.org/3/library/functions.html#object

Krake, Release 1.0.0

Example

key = Key("/books/{namespaces}/{isbn}")

The parameters are substituted by in the corresponding methods by either attributes of the passed object or
additional keyword arguments.

Parameters

• template (str) – Key template with format string-like parameters

• attribute (str, optional) – Load attributes in format_object() from this
attribute of the passed object.

format_kwargs(**kwargs)
Create a key from keyword arguments

Parameters **kwargs – Keyword arguments for parameter substitution

Returns Key from the key template with all parameters substituted by the given keyword argu-
ments.

Return type str

format_object(obj)
Create a key from a given object

If attribute is given, attributes are loaded from this attribute of the object rather than the object itself.

Parameters obj (object) – Object from which attributes are looked up

Returns Key from the key template with all parameters substituted by attributes loaded from the
given object.

Return type str

Raises AttributeError – If a required parameter is missing

matches(key)
Check if a given key matches the template

Parameters key (str) – Key that should be checked

Returns True of the given key matches the key template

Return type bool

prefix(**kwargs)
Create a partial key (prefix) for a given object.

Parameters **kwargs – Parameters that will be used for substitution

Returns Partial key from the key template with some parameters substituted

Return type str

Raises TypeError – If a parameter is passed as keyword argument but a preceding parameter
is not given.

krake.data.persistent(key)
Decorator factory for marking a class with a template that should be used as etcd key.

The passed template will be converted into a Key instance using the metadata attribute and will be assigned
to the __etcd_key__ attribute of the decorated class.

186 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError

Krake, Release 1.0.0

Example

from krake.data import persistent
from krake.data.serializable import Serializable, persistent
from krake.data.core import Metadata

@persistent("/books/{name}")
class Book(Serializable):

metadata: Metadata

Parameters key (str) – Etcd key template. Parameters will be loaded from the metadata at-
tribute of the decorated class.

Returns Decorator that can be used to assign an __etcd_key__ attribute to the decorated object
based on the passed key template.

Return type callable

This module defines a declarative API for defining data models that are JSON-serializable and JSON-deserializable.

class krake.data.serializable.ApiObject(**kwargs)
Bases: krake.data.serializable.Serializable

Base class for objects manipulated via REST API.

api and kind should be defined as simple string class :variables. They are automatically converted into
dataclass fields with :corresponding validators.

api
Name of the API the object belongs to

Type str

kind
String name describing the kind (type) of the object

Type str

Example

from krake.data.serializable import ApiObject
from krake.data.core import Metadata, Status

class Book(ApiObject):
api: str = "shelf" # The book resource belongs to the "shelf api"
kind: str = "Book"

metadata: Metadata
spec: BookSpec
status: Status

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

4.15. Krake Reference 187

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

class krake.data.serializable.ModelizedSchema(*, only: types.StrSequenceOrSet | None
= None, exclude: types.StrSequenceOrSet
= (), many: bool = False, con-
text: dict | None = None, load_only:
types.StrSequenceOrSet = (), dump_only:
types.StrSequenceOrSet = (), partial: bool
| types.StrSequenceOrSet = False, un-
known: str | None = None)

Bases: marshmallow.schema.Schema

Simple marshmallow schema constructing Python objects in a post_load hook.

Subclasses can specify a callable attribute __model__ which is called with all deserialized attributes as key-
word arguments.

The Meta.unknown field is set to avoid considering unknown fields during validation. It mostly prevents
create tests from failing.

__model__
Model factory returning a new instance of a specific model

Type callable

class krake.data.serializable.PolymorphicContainer(**kwargs)
Bases: krake.data.serializable.Serializable

Base class for polymorphic serializable objects.

The polymorphic serializable has a string attribute type which is used as discriminator for the different types.
There is an attribute named exactly like the value of the type attribute containing the deserialized subtype.

Every new subclass will create its own Schema attribute. This means every subclass has its own internal
subtype registry.

Schema
Schema that will be used for (de-)serialization of the class.

Type PolymorphicContainerSchema

Example:

from krake.data.serializable import Serializable, PolymorphicContainer

class ValueSpec(PolymorphicContainer):
pass

@ProviderSpec.register("float")
class FloatSpec(Serializable):

min: float
max: float

@ProviderSpec.register("bool")
class BoolSpec(Serializable):

pass

Deserialization
spec = ProviderSpec.deserialize({

"type": "float",
"float": {

"min": 0,
"max": 1.0,

(continues on next page)

188 Chapter 4. Developer Documentation

https://marshmallow.readthedocs.io/en/stable/marshmallow.schema.html#marshmallow.schema.Schema

Krake, Release 1.0.0

(continued from previous page)

},
})
assert isinstance(spec.float, FloatSpec)

Serialization
assert ProviderSpec(type="bool", bool=BoolSpec()).serialize() == {

"type": bool,
"bool": {},

}

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

classmethod register(name)
Decorator function for registering a class under a unique name.

Parameters name (str) – Name that will be used as value for the type field to identify the
decorated class.

Returns Decorator that will register the decorated class in the polymorphic schema (see
PolymorphicContainerSchema.register()).

Return type callable

update(overwrite)
Update the polymorphic container with fields from the overwrite object.

A reference to the polymorphic field – the field called like the value of the type attribute – of the overwrite
object is assigned to the current object even if the types of the current object and the overwrite object are
identical.

Parameters overwrite (Serializable) – Serializable object will be merged with the cur-
rent object.

class krake.data.serializable.PolymorphicContainerSchema(*, only:
types.StrSequenceOrSet
| None = None, exclude:
types.StrSequenceOrSet
= (), many: bool =
False, context: dict |
None = None, load_only:
types.StrSequenceOrSet
= (), dump_only:
types.StrSequenceOrSet
= (), partial: bool |
types.StrSequenceOrSet
= False, unknown: str |
None = None)

Bases: marshmallow.schema.Schema

Schema that is used by PolymorphicContainer

It declares just one string field type which is used as discriminator for the different types.

There should be a field called exactly like the type. The value of this field is passed to the registered schema for
deserialization.

4.15. Krake Reference 189

https://docs.python.org/3/library/stdtypes.html#str
https://marshmallow.readthedocs.io/en/stable/marshmallow.schema.html#marshmallow.schema.Schema

Krake, Release 1.0.0

type: float
float:

min: 0
max: 1.0

type: int
int:

min: 0
max: 100

Every subclass will create its own internal subtype registry.

classmethod register(type, dataclass)
Register a Serializable for the given type string

Parameters

• type (str) – Type name that should be used as discriminator

• dataclass (object) – Dataclass that will be used when the type field equals the spec-
ified name.

Raises ValueError – If the type name is already registered

class krake.data.serializable.Serializable(**kwargs)
Bases: object

Base class for declarative serialization API.

Fields can be marked with the metadata attribute of dataclasses.Field. Currently the following mark-
ers exists:

readonly A field marked as “readonly” is automatically generated by the API server and not controlled by the
user. The user cannot update this field. The corresponding marshmallow field allows None as valid value.

subresource A field marked as “subresource” is ignored in update request of a resource. Extra REST call are
required to update a subresource. A well known subresource is “status”.

All field metadata attributes are also passed to the marshmallow.fields.Field instance. This means the
user can control the generated marshmallow field with the metadata attributes.

The class also defines a custom __init__ method accepting every attribute as keyword argument in arbitrary
order in contrast to the standard init method of dataclasses.

Example

from krake.data.serializable import Serializable

class Book(Serializable):
author: str
title: str
isbn: str = fields(metadata={"readonly": True})

assert hasattr(Book, "Schema")

There are cases where multiple levels needs to be validated together. In this case, the validates metadata
key for a single field is not sufficient anymore. One solution is to overwrite the auto-generated schema by a
custom schema using the marshmallow.decorators.validates_schema() decorator.

190 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/dataclasses.html#dataclasses.Field
https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field
https://marshmallow.readthedocs.io/en/stable/marshmallow.decorators.html#marshmallow.decorators.validates_schema

Krake, Release 1.0.0

Another solution is leveraging the __post_init__() method of dataclasses. The fields can be validated in
this method and a raised marshmallow.ValidationError will propagate to the Schema deserialization
method.

from marshmallow import ValidationError

class Interval(Serializable):
max: int
min: int

def __post_init__(self):
if self.min > self.max:

raise ValidationError("'min' must not be greater than 'max'")

This will raise a ValidationError
interval = Interval.deserialize({"min": 2, "max": 1})

Schema
Schema for this dataclass

Type ModelizedSchema

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

__post_init__()
The __init__() method calls this method after all fields are initialized.

It is mostly useful for schema-level validation (see above).

For now, Serializable does not support init-only variables because they do not make much sense for
object stored in a database. This means no additional parameters are passed to this method.

classmethod deserialize(data, creation_ignored=False)
Loading an instance of the class from JSON-encoded data.

Parameters

• data (dict) – JSON dictionary that should be deserialized.

• creation_ignored (bool) – if True, all attributes not needed at the creation are
ignored. This contains the read-only and subresources, which can only be created by the
API.

Raises marshmallow.ValidationError – If the data is invalid

classmethod fields_ignored_by_creation()
Return the name of all fields that do not have to be provided during the creation of an instance.

Returns Set of name of fields that are either subresources or read-only, or nested read-only
fields.

Return type set

classmethod readonly_fields(prefix=None)
Return the name of all read-only fields. Nested fields are returned with dot-notation, for lists also. In this
case, the argument is the one taken into account for looking at the read-only fields.

Example:

4.15. Krake Reference 191

https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.ValidationError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.ValidationError
https://docs.python.org/3/library/stdtypes.html#set

Krake, Release 1.0.0

class Comment(Serializable):
id: int = field(metadata={"readonly": True})
content: str

class BookMetadata(Serializable):
name: str = field(metadata={"readonly": True})
published: datetime = field(metadata={"readonly": True})
last_borrowed: datetime

class Book(Serializable):
id: int = field(metadata={"readonly": True})
metadata: BookMetadata
status: str
comments: List[Comment]

expected = {'id', 'metadata.name', 'metadata.published', 'comment.id'}
assert Book.readonly_fields() == expected

Parameters prefix (str, optional) – Used for internal recursion

Returns Set of field names that are marked as with readonly in their metadata.

Return type set

serialize(creation_ignored=False)
Serialize the object using the generated Schema.

Parameters creation_ignored (bool) – if True, all attributes not needed at the creation
are ignored. This contains the read-only and subresources, which can only be created by the
API.

Returns JSON representation of the object

Return type dict

classmethod subresources_fields()
Return the name of all fields that are defined as subresource.

Returns

Set of field names that are marked as subresource in their metadata

Return type set

update(overwrite)
Update data class fields with corresponding fields from the overwrite object.

If a field is marked as _subresource_ or _readonly_ it is not modified. If a field is marked as _immutable_
and there is an attempt to update the value, the ValueError is raised. Otherwise, attributes from over-
write will replace attributes from the current object.

The update() must ignore the _subresource_ and _readonly_ fields, to avoid accidentally overwriting
e.g. status fields in read-modify-write scenarios.

The function works recursively for nested Serializable attributes which means the update()
method of the attribute will be used. This means the identity of a Serializable attribute will not
change unless the current attribute or the overwrite attribute is None.

All other attributes are updated by assigning references from the overwrite attributes to the current object.
This leads to a behavior similar to “shallow copying” (see copy.copy()). If the attribute is mutable,

192 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/copy.html#copy.copy

Krake, Release 1.0.0

e.g. list or dict, the attribute in the current object will reference the same object as in the overwrite
object.

Parameters overwrite (Serializable) – Serializable object will be merged with the cur-
rent object.

Raises ValueError – If there is an attempt to update an _immutable_ field.

class krake.data.serializable.SerializableMeta
Bases: type

Metaclass for Serializable. It automatically converts a specified class into an dataclass (see
dataclasses.dataclass()) and creates a corresponding marshmallow.Schema class. The schema
class is assigned to the Schema attribute.

krake.data.serializable.field_for_schema(type_, default=<dataclasses._MISSING_TYPE
object>, **metadata)

Create a corresponding marshmallow.fields.Field for the passed type.

If metadata contains marshmallow_field key, the value will be used directly as field.

If type_ has a Schema attribute which should be a subclass of marshmallow.Schema a
:class.‘marshmallow.fields.Nested‘ field will be returned wrapping the schema.

If type_ has a Field attribute which should be a subclass of marshmallow.fields.Field an instance
of this attribute will be returned.

Parameters

• type (type) – Type of the field

• default (optional) – Default value of the field

• **metadata (dict) – Any additional keyword argument that will be passed to the field

Returns Serialization field for the passed type

Return type marshmallow.fields.Field

Raises NotImplementedError – If the marshmallow field cannot not be determined for the
passed type

krake.data.serializable.is_base_generic(cls)
Detects generic base classes, for example List but not List[int].

Parameters cls – Type annotation that should be checked

Returns True if the passed type annotation is a generic base.

Return type bool

krake.data.serializable.is_generic(cls)
Detects any kind of generic, for example List or List[int]. This includes “special” types like Union and Tuple -
anything that’s subscriptable, basically.

Parameters cls – Type annotation that should be checked

Returns True if the passed type annotation is a generic.

Return type bool

krake.data.serializable.is_generic_subtype(cls, base)
Check if a given generic class is a subtype of another generic class

If the base is a qualified generic, e.g. List[int], it is checked if the types are equal. If the base or cls does
not have the attribute __origin__, e.g. Union, Optional, it is checked, if the type of base or cls is equal to the

4.15. Krake Reference 193

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field
https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema
https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#dict
https://marshmallow.readthedocs.io/en/stable/marshmallow.fields.html#marshmallow.fields.Field
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

opponent. This is done for every possible case. If the base and cls have the attribute __origin__, e.g. list for
typing.List, it is checked if the class is equal to the original type of the generic base class.

Parameters

• cls – Generic type

• base – Generic type that should be the base of the given generic type.

Returns True of the given generic type is a subtype of the given base generic type.

Return type bool

krake.data.serializable.is_qualified_generic(cls)
Detects generics with arguments, for example List[int] but not List

Parameters cls – Type annotation that should be checked

Returns True if the passed type annotation is a qualified generic.

Return type bool

.

class krake.data.core.BaseMetric(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.BaseMetricsProvider(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Conflict(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.CoreMetadata(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.GlobalMetric(**kwargs)
Bases: krake.data.core.BaseMetric

194 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.GlobalMetricList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.GlobalMetricsProvider(**kwargs)
Bases: krake.data.core.BaseMetricsProvider

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.GlobalMetricsProviderList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.KafkaSpec(**kwargs)
Bases: krake.data.serializable.Serializable

Specifications to connect to a KSQL database, and retrieve a specific row from a specific table.

comparison_column
name of the column where the value will be compared to the metric name, to select the right metric.

Type str

value_column
name of the column where the value of a metric is stored.

Type str

table
the name of the KSQL table where the metric is defined.

Type str

url
endpoint of the KSQL database.

Type str

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

4.15. Krake Reference 195

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

class krake.data.core.ListMetadata(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Metadata(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Metric(**kwargs)
Bases: krake.data.core.BaseMetric

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.MetricList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.MetricRef(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.MetricSpec(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.MetricSpecProvider(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

196 Chapter 4. Developer Documentation

Krake, Release 1.0.0

class krake.data.core.MetricsProvider(**kwargs)
Bases: krake.data.core.BaseMetricsProvider

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.MetricsProviderList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.MetricsProviderSpec(**kwargs)
Bases: krake.data.serializable.PolymorphicContainer

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.PolymorphicContainerSchema

class krake.data.core.PrometheusSpec(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Reason(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.ReasonCode
Bases: enum.IntEnum

An enumeration.

class krake.data.core.ResourceRef(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Role(**kwargs)
Bases: krake.data.serializable.ApiObject

4.15. Krake Reference 197

https://docs.python.org/3/library/enum.html#enum.IntEnum

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.RoleBinding(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.RoleBindingList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.RoleList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.RoleRule(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.StaticSpec(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Status(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.Verb
Bases: enum.Enum

198 Chapter 4. Developer Documentation

https://docs.python.org/3/library/enum.html#enum.Enum

Krake, Release 1.0.0

An enumeration.

class krake.data.core.WatchEvent(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.core.WatchEventType
Bases: enum.Enum

An enumeration.

krake.data.core.resource_ref(resource)
Create a ResourceRef from a ApiObject

Parameters resource (serializable.ApiObject) – API object that should be referenced

Returns Corresponding reference to the API object

Return type ResourceRef

krake.data.core.validate_key(key)
Validate the given key against the corresponding regular expression.

Parameters key – the string to validate

Raises ValidationError – if the given key is not conform to the regular expression.

krake.data.core.validate_value(value)
Validate the given value against the corresponding regular expression.

Parameters value – the string to validate

Raises ValidationError – if the given value is not conform to the regular expression.

class krake.data.infrastructure.Cloud(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.CloudBinding(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.CloudList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

4.15. Krake Reference 199

https://docs.python.org/3/library/enum.html#enum.Enum

Krake, Release 1.0.0

class krake.data.infrastructure.CloudSpec(**kwargs)
Bases: krake.data.serializable.PolymorphicContainer

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.PolymorphicContainerSchema

class krake.data.infrastructure.CloudState
Bases: enum.Enum

An enumeration.

class krake.data.infrastructure.CloudStatus(**kwargs)
Bases: krake.data.serializable.Serializable

Status subresource of GlobalCloud and Cloud.

state
Current state of the cloud.

Type CloudState

metrics_reasons
Mapping of the name of the metrics for which an error occurred to the reason for which it occurred.

Type dict[str, Reason]

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.GlobalCloud(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

__post_init__()
Method automatically ran at the end of the __init__() method, used to validate dependent attributes.

Validations:

1. A non-namespaced GlobalCloud resource cannot reference the namespaced

InfrastructureProvider resource, see #499 for details

2. A non-namespaced GlobalCloud resource cannot reference the namespaced

Metric resource, see #499 for details

Note: This validation cannot be achieved directly using the validate metadata, since validate
must be a zero-argument callable, with no access to the other attributes of the dataclass.

class krake.data.infrastructure.GlobalCloudList(**kwargs)
Bases: krake.data.serializable.ApiObject

200 Chapter 4. Developer Documentation

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.GlobalInfrastructureProvider(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.GlobalInfrastructureProviderList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.ImSpec(**kwargs)
Bases: krake.data.serializable.Serializable

IMSpec should contain access data to the IM provider instance.

url
endpoint of the IM provider instance.

Type str

username
IM provider instance username.

Type str, optional

password
IM provider instance password.

Type str, optional

token
IM provider instance token.

Type str, optional

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

__post_init__()
Method automatically ran at the end of the __init__() method, used to validate dependent attributes.

Validations: - At least one of the attributes from the following should be defined:

• username and password

• token

4.15. Krake Reference 201

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

class krake.data.infrastructure.InfrastructureProvider(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.InfrastructureProviderList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.InfrastructureProviderRef(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.InfrastructureProviderSpec(**kwargs)
Bases: krake.data.serializable.PolymorphicContainer

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.PolymorphicContainerSchema

class krake.data.infrastructure.OpenstackAuthMethod(**kwargs)
Bases: krake.data.serializable.PolymorphicContainer

Container for the different authentication strategies of OpenStack Identity service (Keystone).

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.PolymorphicContainerSchema

class krake.data.infrastructure.OpenstackSpec(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.Password(**kwargs)
Bases: krake.data.serializable.Serializable

Data for the password authentication strategy of the OpenStack identity service (Keystone).

version
OpenStack identity API version used for authentication

202 Chapter 4. Developer Documentation

Krake, Release 1.0.0

Type str

user
OpenStack user that will be used for authentication

Type UserReference

project
OpenStack project that will be used by Krake

Type ProjectReference

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.ProjectReference(**kwargs)
Bases: krake.data.serializable.Serializable

Reference to the OpenStack project that is used by the Password authentication strategy.

name
Name or UUID of the OpenStack project

Type str

domain_id
Domain ID of the OpenStack project. Defaults to default

Type str, optional

comment
Arbitrary string for user-defined information, e.g. semantic names

Type str, optional

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.infrastructure.UserReference(**kwargs)
Bases: krake.data.serializable.Serializable

Reference to the OpenStack user that is used by the Password authentication strategy.

username
Username or UUID of the OpenStack user

Type str

password
Password of the OpenStack user

Type str

domain_name
Domain name of the OpenStack user. Defaults to Default

Type str, optional

comment
Arbitrary string for user-defined information, e.g. semantic names

4.15. Krake Reference 203

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

Type str, optional

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

Data model definitions for Kubernetes-related resources

class krake.data.kubernetes.Application(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ApplicationComplete(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ApplicationList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ApplicationShutdown(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ApplicationSpec(**kwargs)
Bases: krake.data.serializable.Serializable

Spec subresource of Application.

manifest
List of Kubernetes resources to create. This attribute is managed by the user.

Type list[dict]

tosca
The to be created TOSCA template. A TOSCA template should be defined as a python dict or with the
URL, where the template is located. This attribute is managed by the user.

Type Union[dict, str], optional

204 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

csar
The to be created CSAR archive. A CSAR file should be defined with the URL, where the archive is
located. This attribute is managed by the user.

Type str, optional

observer_schema
List of dictionaries of fields that should be observed by the Kubernetes Observer. This attribute is man-
aged by the user. Using this attribute as a basis, the Kubernetes Controller generates the status.
mangled_observer_schema.

Type list[dict], optional

constraints
Scheduling constraints

Type Constraints, optional

hooks
List of enabled hooks

Type list[str], optional

shutdown_grace_time
timeout in seconds for the shutdown hook

Type int

backoff
multiplier applied to backoff_delay between attempts. default: 1 (no backoff)

Type field, optional

backoff_delay
delay [s] between attempts. default: 1

Type field, optional

backoff_limit
a maximal number of attempts, default: -1 (infinite)

Type field, optional

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

__post_init__()
Method automatically ran at the end of the __init__() method, used to validate dependent attributes.

Validations: 1. At least one of the attributes from the following should be defined: - manifest - tosca
- csar If the user specified multiple attributes at once, the manifest has the highest priority, after that
tosca and csar.

2. If a custom observer_schema and manifest are specified by the user, the observer_schema
needs to be validated, i.e. verified that resources are correctly identified and refer to resources defined in
manifest, that fields are correctly identified and that all special control dictionaries are correctly defined.

Note: These validations cannot be achieved directly using the validate metadata, since
validate must be a zero-argument callable, with no access to the other attributes of the
dataclass.

4.15. Krake Reference 205

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

class krake.data.kubernetes.ApplicationState
Bases: enum.Enum

An enumeration.

class krake.data.kubernetes.ApplicationStatus(**kwargs)
Bases: krake.data.core.Status

Status subresource of Application.

state
Current state of the application

Type ApplicationState

container_health
Specific details of the application

Type ContainerHealth

kube_controller_triggered
Timestamp that represents the last time the current version of the Application was scheduled (version here
meaning the Application after an update). It is only updated after the update of the Application led to a
rescheduling, or at the first scheduling. It is used to keep a strict workflow between the Scheduler and
Kubernetes Controller: the first one should always handle an Application creation or update before the
latter. Only after this field has been updated by the Scheduler to be higher than the modified timestamp
can the Kubernetes Controller handle the Application.

Type datetime.datetime

scheduled
Timestamp that represents the last time the application was scheduled to a different cluster, in other words
when scheduled_to was modified. Thus, it is updated at the first binding to a cluster, or during the
binding with a different cluster. This represents the timestamp when the current Application was scheduled
to its current cluster, even if it has been updated in the meantime.

Type datetime.datetime

scheduled_to
Reference to the cluster where the application should run.

Type ResourceRef

running_on
Reference to the cluster where the application is currently running.

Type ResourceRef

services
Mapping of Kubernetes service names to their public endpoints.

Type dict

mangled_observer_schema
Actual observer schema used by the Kubernetes Observer, generated from the user inputs spec.
observer_schema

Type list[dict]

last_observed_manifest
List of Kubernetes resources observed on the Kubernetes API.

Type list[dict]

206 Chapter 4. Developer Documentation

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Krake, Release 1.0.0

last_applied_manifest
List of Kubernetes resources created via Krake. The manifest is augmented by additional resources needed
to be created for the functioning of internal mechanisms, such as the “Complete Hook”.

Type list[dict]

complete_token
Token to identify the “Complete Hook” request

Type str

complete_cert
certificate for the identification of the “Complete Hook”.

Type str

complete_key
key for the certificate of the “Complete Hook” identification.

Type str

shutdown_token
Token to identify the “Shutdown Hook” request

Type str

shutdown_cert
certificate for the identification of the “Shutdown Hook”.

Type str

shutdown_key
key for the certificate of the “Shutdown Hook” identification.

Type str

shutdown_grace_period
time period the shutdown method waits on after the shutdown command was issued to an object

Type datetime

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.CloudConstraints(**kwargs)
Bases: krake.data.serializable.Serializable

Constraints for the Cloud to which this cluster is scheduled.

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.Cluster(**kwargs)
Bases: krake.data.serializable.ApiObject

4.15. Krake Reference 207

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterBinding(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterCloudConstraints(**kwargs)
Bases: krake.data.serializable.Serializable

Constraints restricting the scheduling decision for a Cluster.

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterConstraints(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterList(**kwargs)
Bases: krake.data.serializable.ApiObject

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterNode(**kwargs)
Bases: krake.data.serializable.Serializable

Cluster node subresource of ClusterStatus.

api
Api version if the resource.

Type str, optional

kind
Kind of the resource.

Type str, optional

status
Current status of the cluster node.

Type ClusterNodeStatus, optional

208 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterNodeCondition(**kwargs)
Bases: krake.data.serializable.Serializable

Cluster node condition subresource of ClusterNodeStatus.

message
Human readable message indicating details about last transition.

Type str

reason
A brief reason for the condition’s last transition.

Type str

status
Status of the condition, one of “True”, “False”, “Unknown”.

Type str

type
Type of node condition.

Type str

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterNodeMetadata(**kwargs)
Bases: krake.data.serializable.Serializable

Cluster node metadata subresource of ClusterNode.

name
Name of the cluster node.

Type str

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterNodeStatus(**kwargs)
Bases: krake.data.serializable.Serializable

Cluster node status subresource of ClusterNode.

conditions
List of current observed node conditions.

Type list[ClusterNodeCondition]

4.15. Krake Reference 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ClusterSpec(**kwargs)
Bases: krake.data.serializable.Serializable

Spec subresource of Cluster

kubeconfig
path to the kubeconfig file for the cluster to register.

Type dict

custom_resources
name of all custom resources that are available on the current cluster.

Type list

metrics
metrics used on the cluster.

Type list

backoff
multiplier applied to backoff_delay between attempts. default: 1 (no backoff)

Type field, optional

backoff_delay
delay [s] between attempts. default: 1

Type field, optional

backoff_limit
a maximal number of attempts, default: -1 (infinite)

Type field, optional

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

__post_init__()
Method automatically ran at the end of the __init__() method, used to validate dependent attributes.

Validations: - At least one of the attributes from the following should be defined:

• kubeconfig

• tosca

Note: This validation cannot be achieved directly using the validate metadata, since validate
must be a zero-argument callable, with no access to the other attributes of the dataclass.

class krake.data.kubernetes.ClusterState
Bases: enum.Enum

An enumeration.

210 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/enum.html#enum.Enum

Krake, Release 1.0.0

class krake.data.kubernetes.ClusterStatus(**kwargs)
Bases: krake.data.core.Status

Status subresource of Cluster.

kube_controller_triggered
Time when the Kubernetes controller was

Type datetime

triggered. This is used to handle cluster state transitions.

state
Current state of the cluster.

Type ClusterState

metrics_reasons
mapping of the name of the metrics for which an error occurred to the reason for which it occurred.

Type dict[str, Reason]

last_applied_tosca
TOSCA template applied via Krake.

Type dict

nodes
list of cluster nodes.

Type list[ClusterNode]

cluster_id
UUID or name of the cluster (infrastructure) given by the infrastructure provider

Type str

scheduled
Timestamp that represents the last time the cluster was scheduled to a cloud.

Type datetime.datetime

scheduled_to
Reference to the cloud where the cluster should run.

Type ResourceRef

running_on
Reference to the cloud where the cluster is running.

Type ResourceRef

retries
Count of remaining retries to access the cluster. Is set via the Attribute backoff in in ClusterSpec.

Type int

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.Constraints(**kwargs)
Bases: krake.data.serializable.Serializable

4.15. Krake Reference 211

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int

Krake, Release 1.0.0

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

class krake.data.kubernetes.ContainerHealth(**kwargs)
Bases: krake.data.serializable.Serializable

class Schema(*, only: types.StrSequenceOrSet | None = None, exclude: types.StrSequenceOrSet = (),
many: bool = False, context: dict | None = None, load_only: types.StrSequenceOrSet
= (), dump_only: types.StrSequenceOrSet = (), partial: bool | types.StrSequenceOrSet
= False, unknown: str | None = None)

Bases: krake.data.serializable.ModelizedSchema

exception krake.data.kubernetes.ObserverSchemaError
Bases: Exception

Custom exception raised if the validation of the observer_schema fails

4.16 Client Reference

rok is a Python command line interface for the krakeAPI server. It can be used to manipulate any RESTful resource
handled by Krake. It can be used by end users as well as for administrative tasks.

4.16.1 Fixtures

Simple dependency injection module for rok inspired by pytest’s fixtures.

There is a simple registration decorator fixture() that can be used to mark functions as fixtures. Functions using
these fixtures can declare their dependency with the use() decorator. Finally, Resolver is used to wire fixtures
and dependencies.

class rok.fixtures.BaseUrlSession(base_url=None, raise_for_status=True, client_ca=None,
ssl_cert=None, ssl_key=None)

Bases: requests.sessions.Session

Simple requests session using a base URL for all requests.

Parameters

• base_url (str, optional) – Base URL that should be used as prefix for every re-
quest.

• raise_for_status (bool, optional) – Automatically raise an exception of for
error response codes. Default: True

create_url(url)

request(method, url, *args, raise_for_status=None, **kwargs)
Constructs a Request, prepares it and sends it. Returns Response object.

Parameters

• method – method for the new Request object.

• url – URL for the new Request object.

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

212 Chapter 4. Developer Documentation

https://docs.python.org/3/library/exceptions.html#Exception
https://requests.readthedocs.io/en/stable/api/#requests.Session
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Krake, Release 1.0.0

• data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body
of the Request.

• json – (optional) json to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of 'filename': file-like-objects for multi-
part encoding upload.

• auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.

• timeout (float or tuple) – (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read timeout) tuple.

• allow_redirects (bool) – (optional) Set to True by default.

• proxies – (optional) Dictionary mapping protocol or protocol and hostname to the URL
of the proxy.

• stream – (optional) whether to immediately download the response content. Defaults to
False.

• verify – (optional) Either a boolean, in which case it controls whether we verify the
server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use.
Defaults to True. When set to False, requests will accept any TLS certificate presented
by the server, and will ignore hostname mismatches and/or expired certificates, which will
make your application vulnerable to man-in-the-middle (MitM) attacks. Setting verify to
False may be useful during local development or testing.

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

Return type requests.Response

class rok.fixtures.Resolver(fixtures=None)
Bases: object

Dependency resolver for function arguments annotated with depends().

Dependencies of a function are loaded from the depends attribute of the function. If a fixture is not available,
the resolver checks if there is a default argument. Otherwise a RuntimeError is raised.

All fixtures can be overwritten by passing a corresponding keyword argument to the resolver call.

Resolver uses the context manager protocol to manage the lifecycle of generator-based fixtures.

Example

from sqlalchemy import create_engine
from krake.fixtures import fixture, depends, Resolver

@fixture
def engine():

yield create_engine("postgresql://user:passwd@localhost:5432/database")

@depends("engine")
def fetch(engine, min_uid):

with engine.begin() as connection:
result = connection.execute(

"SELECT username FROM users WHERE uid >= ?", min_uid
(continues on next page)

4.16. Client Reference 213

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://requests.readthedocs.io/en/stable/user/advanced/#timeouts
https://docs.python.org/3/library/functions.html#bool
https://requests.readthedocs.io/en/stable/api/#requests.Response
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#RuntimeError

Krake, Release 1.0.0

(continued from previous page)

)
for row in result:

print(row["username"])

with Resolver() as resolver:
Execute function "fetch" with resolved fixtures. Additional
keyword arguments can be passed. These can also be used to
overwrite fixtures.
resolver(fetch, min_uid=1000)

Parameters fixtures (dict, optional) – A mapping of fixture names to functions. De-
faults to the mapping of fixture.mapping

rok.fixtures.config()

rok.fixtures.depends(*dependencies)
Decorator function for marking fixture dependencies of a function.

Example

from rok.fixtures import fixture, depends

@depends("engine")
def fetch_records(engine):

Do something with the engine ...

Fixtures themselves can also depend on other fixtures
@fixture
@depends("config")
def engine(config):

return create_engine(config=config)

@fixture
def config:

return load_config()

Parameters *dependencies – Fixtures the decorated function depends on

Returns Decorator for explicitly marking function dependencies.

Return type callable

rok.fixtures.fixture(func)
Mark a function or generator as fixtures. The name of the function is used as fixture name.

If the marked function is a generator function, the fixture can be used as kind of context manager:

@fixture
def session():

with Session() as session:
yield session

rok.fixtures.mapping
Mapping of registered fixture names to functions

Type dict

214 Chapter 4. Developer Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Krake, Release 1.0.0

Parameters func – Function that should be registered as fixture

Raises RuntimeError – If the a fixtures with the same name is already registered.

rok.fixtures.session(config)

4.16.2 Command Line Parser

This module defines a declarative API for Python’s standard argparse module.

class rok.parser.MetricAction(*args, nargs=None, default=None, metavar=None, **kwargs)
Bases: argparse.Action

argparse action for metric values

A metric argument requires two arguments. The first argument is the name of a metric (str). The second
argument is the weight of the argument as float. The option can be called several times.

Example

cli --metric-argument my-metric 1.2 --metric-argument my-other-metric 4.5

The action will populate the namespace with a list of dictionaries:

[
{"name": "my-metric", "weight": 1.2},
{"name": "my-other-metric", "weight": 4.5},
...

]

class rok.parser.ParserSpec(*args, **kwargs)
Bases: object

Declarative parser specification for Python’s standard argparse module.

Example

from rok.parser import ParserSpec, argument

spec = ParserSpec(prog="spam", description="Spam command line interface")

@spec.command("spam", help="Spam your shell")
@argument("-n", type=int, default=42, help="How often should I spam?")
@argument("message", help="Spam message")
def spam(n, message):

for _ in range(n):
print(message)

parser = spec.create_parser()
args = parser.parse_args()

Specifications can be nested:

4.16. Client Reference 215

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/argparse.html#module-argparse

Krake, Release 1.0.0

eggs = ParserSpec("eggs", aliases=["eg"], help="... and eggs")

@eggs.command("spam")
def eggs_spam():

while True:
print("spam")
print("eggs")

spec.add_spec(eggs)

Parameters

• *args – Positional arguments that will be passed to either argparse.
ArgumentParser or subparsers.

• *kwargs – Keyword arguments that will be passed to either argparse.
ArgumentParser or subparsers.

add_spec(subparser)
Register another specification as subparser

Parameters subparser (ParserSpec) – Sub-specification defining subcommands

command(name, *args, **kwargs)
Decorator function for commands registering the name, positional and keyword arguments for a subparser.

Parameters

• name (name) – Name of the command that will be used in the command line.

• *args – Positional arguments for the subparser

• **kwargs – Keyword arguments for the subparser

Returns Decorator for functions that will be registered as command default argument on the
subparser.

Return type callable

create_parser(parent=None)
Create a standard Python parser from the specification

Parameters parent (optional) – argparse subparser that should be used instead of creating
a new root argparse.ArgumentParser

Returns Standard Python parser

Return type argparse.ArgumentParser

subparser(*args, **kwargs)
Create a subspecification and automatically register it via add_spec()

Parameters

• *args – Positional arguments for the specification

• **kwargs – Keyword arguments for the specification

Returns The new subspecification for subcommands

Return type ParserSpec

216 Chapter 4. Developer Documentation

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Krake, Release 1.0.0

class rok.parser.StoreDict(option_strings, dest, nargs=None, metavar=’KEY=VALUE’,
**kwargs)

Bases: argparse.Action

Action storing <key=value> pairs in a dictionary.

Example

parser = argparse.ArgumentParser()
parser.add_argument(

'--foo', action=StoreDict
)
args = parser.parse_args('--foo label=test --foo lorem=ipsum')
assert argparse.Namespace(foo={'label': 'test', 'lorem': 'ipsum'}) == args

rok.parser.arg_backoff(fn)

rok.parser.arg_backoff_delay(fn)

rok.parser.arg_backoff_limit(fn)

rok.parser.arg_formatting(fn)

rok.parser.arg_global_metric(fn)

rok.parser.arg_labels(fn)

rok.parser.arg_metric(fn)

rok.parser.arg_namespace(fn)

rok.parser.argument(*args, **kwargs)
Decorator function for standard argparse arguments.

The passed arguments and keyword arguments are stored as tuple in a parser_arguments attribute of the
decorated function. This list will be reused by class:ParserSpec to add arguments to decorated commands.

Parameters

• *args – Positional arguments that should be passed to argparse.ArgumentParser.
add_argument().

• **kwargs – Keyword arguments that should be passed to argparse.
ArgumentParser.add_argument().

Returns A decorator that can be used to decorate a command function.

Return type callable

rok.parser.mutually_exclusive_group(group)
Decorator function for mutually exclusive argparse arguments.

Parameters group (list of tuples) – A list of the standard :mod: argparse arguments which
are mutually exclusive. Each argument is represented as a tuple of its args and kwargs.

Returns A decorator that can be used to decorate a command function.

Return type callable

4.16. Client Reference 217

https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#module-argparse

Krake, Release 1.0.0

218 Chapter 4. Developer Documentation

Python Module Index

k
krake, 122
krake.api, 124
krake.api.app, 124
krake.api.auth, 125
krake.api.database, 128
krake.api.helpers, 133
krake.api.middlewares, 137
krake.client, 138
krake.client.core, 139
krake.client.infrastructure, 145
krake.client.kubernetes, 150
krake.client.openstack, 154
krake.controller, 158
krake.controller.gc, 175
krake.controller.kubernetes.application,

164
krake.controller.kubernetes.cluster, 171
krake.controller.magnum, 178
krake.controller.scheduler, 174
krake.data, 185
krake.data.core, 194
krake.data.infrastructure, 199
krake.data.kubernetes, 204
krake.data.serializable, 187

r
rok, 212
rok.fixtures, 212
rok.parser, 215

219

Krake, Release 1.0.0

220 Python Module Index

Index

Symbols
__aenter__() (krake.controller.Executor method),

160
__aexit__() (krake.controller.Executor method), 160
__call__() (krake.controller.Reflector method), 162
__exit__() (krake.controller.BurstWindow method),

158
__model__ (krake.data.serializable.ModelizedSchema

attribute), 188
__post_init__() (krake.api.helpers.HttpProblem

method), 135
__post_init__() (krake.data.infrastructure.GlobalCloud

method), 200
__post_init__() (krake.data.infrastructure.ImSpec

method), 201
__post_init__() (krake.data.kubernetes.ApplicationSpec

method), 205
__post_init__() (krake.data.kubernetes.ClusterSpec

method), 210
__post_init__() (krake.data.serializable.Serializable

method), 191
__str__() (krake.controller.ControllerError method),

160

A
accept_accessible()

(krake.controller.kubernetes.cluster.KubernetesClusterController
static method), 172

add_arguments() (krake.ConfigurationOptionMapper
method), 123

add_resource() (krake.controller.gc.DependencyGraph
method), 176

add_spec() (rok.parser.ParserSpec method), 216
all() (krake.api.database.Session method), 131
always_allow() (in module krake.api.auth), 126
always_deny() (in module krake.api.auth), 127
api (krake.api.auth.AuthorizationRequest attribute), 126
api (krake.data.kubernetes.ClusterNode attribute), 208
api (krake.data.serializable.ApiObject attribute), 187

api_client (krake.controller.kubernetes.application.KubernetesClient
attribute), 167

ApiClient (class in krake.client), 138
ApiObject (class in krake.data.serializable), 187
ApiObject.Schema (class in

krake.data.serializable), 187
Application (class in krake.data.kubernetes), 204
Application.Schema (class in

krake.data.kubernetes), 204
application_reflector

(krake.controller.kubernetes.application.KubernetesApplicationController
attribute), 164

ApplicationComplete (class in
krake.data.kubernetes), 204

ApplicationComplete.Schema (class in
krake.data.kubernetes), 204

ApplicationList (class in krake.data.kubernetes),
204

ApplicationList.Schema (class in
krake.data.kubernetes), 204

ApplicationShutdown (class in
krake.data.kubernetes), 204

ApplicationShutdown.Schema (class in
krake.data.kubernetes), 204

ApplicationSpec (class in krake.data.kubernetes),
204

ApplicationSpec.Schema (class in
krake.data.kubernetes), 205

ApplicationState (class in krake.data.kubernetes),
205

ApplicationStatus (class in
krake.data.kubernetes), 206

ApplicationStatus.Schema (class in
krake.data.kubernetes), 207

apply() (krake.controller.kubernetes.application.KubernetesClient
method), 167

arg_backoff() (in module rok.parser), 217
arg_backoff_delay() (in module rok.parser), 217
arg_backoff_limit() (in module rok.parser), 217
arg_formatting() (in module rok.parser), 217

221

Krake, Release 1.0.0

arg_global_metric() (in module rok.parser), 217
arg_labels() (in module rok.parser), 217
arg_metric() (in module rok.parser), 217
arg_namespace() (in module rok.parser), 217
argument() (in module rok.parser), 217
authentication() (in module

krake.api.middlewares), 137
AuthorizationRequest (class in krake.api.auth),

126

B
backoff (krake.data.kubernetes.ApplicationSpec at-

tribute), 205
backoff (krake.data.kubernetes.ClusterSpec attribute),

210
backoff_delay (krake.data.kubernetes.ApplicationSpec

attribute), 205
backoff_delay (krake.data.kubernetes.ClusterSpec

attribute), 210
backoff_limit (krake.data.kubernetes.ApplicationSpec

attribute), 205
backoff_limit (krake.data.kubernetes.ClusterSpec

attribute), 210
BaseMetric (class in krake.data.core), 194
BaseMetric.Schema (class in krake.data.core), 194
BaseMetricsProvider (class in krake.data.core),

194
BaseMetricsProvider.Schema (class in

krake.data.core), 194
BaseUrlSession (class in rok.fixtures), 212
blocking() (in module krake.api.helpers), 136
BurstWindow (class in krake.controller), 158

C
cancel() (krake.controller.WorkQueue method), 162
check_external_endpoint()

(krake.controller.kubernetes.application.KubernetesApplicationController
method), 165

cleanup() (krake.controller.Controller method), 159
cleanup() (krake.controller.gc.GarbageCollector

method), 177
cleanup() (krake.controller.kubernetes.application.KubernetesApplicationController

method), 165
cleanup() (krake.controller.kubernetes.cluster.KubernetesClusterController

method), 172
cleanup() (krake.controller.magnum.MagnumClusterController

method), 179
cleanup() (krake.controller.scheduler.Scheduler

method), 175
Client (class in krake.client), 138
client (krake.api.database.Session attribute), 131
client (krake.client.ApiClient attribute), 138
client_certificate_authentication() (in

module krake.api.auth), 127

close() (krake.client.Client method), 138
close() (krake.controller.WorkQueue method), 163
Cloud (class in krake.data.infrastructure), 199
Cloud.Schema (class in krake.data.infrastructure),

199
CloudBinding (class in krake.data.infrastructure),

199
CloudBinding.Schema (class in

krake.data.infrastructure), 199
CloudConstraints (class in krake.data.kubernetes),

207
CloudConstraints.Schema (class in

krake.data.kubernetes), 207
CloudList (class in krake.data.infrastructure), 199
CloudList.Schema (class in

krake.data.infrastructure), 199
CloudSpec (class in krake.data.infrastructure), 199
CloudSpec.Schema (class in

krake.data.infrastructure), 200
CloudState (class in krake.data.infrastructure), 200
CloudStatus (class in krake.data.infrastructure), 200
CloudStatus.Schema (class in

krake.data.infrastructure), 200
cls (krake.api.database.Session attribute), 132
Cluster (class in krake.data.kubernetes), 207
Cluster.Schema (class in krake.data.kubernetes),

207
cluster_id (krake.data.kubernetes.ClusterStatus at-

tribute), 211
cluster_reflector

(krake.controller.kubernetes.cluster.KubernetesClusterController
attribute), 171

ClusterBinding (class in krake.data.kubernetes),
208

ClusterBinding.Schema (class in
krake.data.kubernetes), 208

ClusterCloudConstraints (class in
krake.data.kubernetes), 208

ClusterCloudConstraints.Schema (class in
krake.data.kubernetes), 208

ClusterConstraints (class in
krake.data.kubernetes), 208

ClusterConstraints.Schema (class in
krake.data.kubernetes), 208

ClusterList (class in krake.data.kubernetes), 208
ClusterList.Schema (class in

krake.data.kubernetes), 208
ClusterNode (class in krake.data.kubernetes), 208
ClusterNode.Schema (class in

krake.data.kubernetes), 208
ClusterNodeCondition (class in

krake.data.kubernetes), 209
ClusterNodeCondition.Schema (class in

krake.data.kubernetes), 209

222 Index

Krake, Release 1.0.0

ClusterNodeMetadata (class in
krake.data.kubernetes), 209

ClusterNodeMetadata.Schema (class in
krake.data.kubernetes), 209

ClusterNodeStatus (class in
krake.data.kubernetes), 209

ClusterNodeStatus.Schema (class in
krake.data.kubernetes), 209

ClusterSpec (class in krake.data.kubernetes), 210
ClusterSpec.Schema (class in

krake.data.kubernetes), 210
ClusterState (class in krake.data.kubernetes), 210
ClusterStatus (class in krake.data.kubernetes), 210
ClusterStatus.Schema (class in

krake.data.kubernetes), 211
command() (rok.parser.ParserSpec method), 216
comment (krake.data.infrastructure.ProjectReference

attribute), 203
comment (krake.data.infrastructure.UserReference at-

tribute), 203
comparison_column (krake.data.core.KafkaSpec at-

tribute), 195
complete_cert (krake.data.kubernetes.ApplicationStatus

attribute), 207
complete_key (krake.data.kubernetes.ApplicationStatus

attribute), 207
complete_token (krake.data.kubernetes.ApplicationStatus

attribute), 207
concurrent() (in module krake.controller.magnum),

182
conditions (krake.data.kubernetes.ClusterNodeStatus

attribute), 209
config() (in module rok.fixtures), 214
ConfigurationOptionMapper (class in krake),

122
Conflict (class in krake.data.core), 194
Conflict.Schema (class in krake.data.core), 194
Constraints (class in krake.data.kubernetes), 211
constraints (krake.data.kubernetes.ApplicationSpec

attribute), 205
Constraints.Schema (class in

krake.data.kubernetes), 211
consume() (krake.controller.magnum.MagnumClusterController

method), 179
container_health (krake.data.kubernetes.ApplicationStatus

attribute), 206
ContainerHealth (class in krake.data.kubernetes),

212
ContainerHealth.Schema (class in

krake.data.kubernetes), 212
Controller (class in krake.controller), 158
ControllerError, 160
CoreApi (class in krake.client.core), 139
CoreMetadata (class in krake.data.core), 194

CoreMetadata.Schema (class in krake.data.core),
194

cors_setup() (in module krake.api.app), 124
create_app() (in module krake.api.app), 124
create_application()

(krake.client.kubernetes.KubernetesApi
method), 150

create_client_certificate() (in module
krake.controller.magnum), 182

create_cloud() (krake.client.infrastructure.InfrastructureApi
method), 145

create_cluster() (krake.client.kubernetes.KubernetesApi
method), 150

create_endpoint() (krake.controller.Controller
method), 159

create_global_cloud()
(krake.client.infrastructure.InfrastructureApi
method), 145

create_global_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 145

create_global_metric()
(krake.client.core.CoreApi method), 139

create_global_metrics_provider()
(krake.client.core.CoreApi method), 139

create_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 145

create_magnum_client()
(krake.controller.magnum.MagnumClusterController
method), 180

create_magnum_cluster() (in module
krake.controller.magnum), 183

create_magnum_cluster()
(krake.client.openstack.OpenStackApi method),
154

create_metric() (krake.client.core.CoreApi
method), 139

create_metrics_provider()
(krake.client.core.CoreApi method), 140

create_parser() (rok.parser.ParserSpec method),
216

create_project() (krake.client.openstack.OpenStackApi
method), 155

create_role() (krake.client.core.CoreApi method),
140

create_role_binding()
(krake.client.core.CoreApi method), 140

create_ssl_context() (in module
krake.controller), 163

create_url() (rok.fixtures.BaseUrlSession method),
212

created (krake.api.database.Revision attribute), 130
CreateFailed, 179

Index 223

Krake, Release 1.0.0

csar (krake.data.kubernetes.ApplicationSpec attribute),
204

custom_resource_apis
(krake.controller.kubernetes.application.KubernetesClient
attribute), 167

custom_resources (krake.controller.kubernetes.application.KubernetesClient
attribute), 166

custom_resources (krake.data.kubernetes.ClusterSpec
attribute), 210

D
DatabaseError, 129
db_session() (in module krake.api.app), 124
default_namespace

(krake.controller.kubernetes.application.KubernetesClient
attribute), 167

delete() (krake.api.database.Session method), 131
delete() (krake.controller.kubernetes.application.KubernetesClient

method), 167
delete_application()

(krake.client.kubernetes.KubernetesApi
method), 150

delete_cloud() (krake.client.infrastructure.InfrastructureApi
method), 146

delete_cluster() (krake.client.kubernetes.KubernetesApi
method), 151

delete_global_cloud()
(krake.client.infrastructure.InfrastructureApi
method), 146

delete_global_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 146

delete_global_metric()
(krake.client.core.CoreApi method), 140

delete_global_metrics_provider()
(krake.client.core.CoreApi method), 140

delete_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 146

delete_magnum_cluster() (in module
krake.controller.magnum), 183

delete_magnum_cluster()
(krake.client.openstack.OpenStackApi method),
155

delete_magnum_cluster()
(krake.controller.magnum.MagnumClusterController
method), 180

delete_metric() (krake.client.core.CoreApi
method), 140

delete_metrics_provider()
(krake.client.core.CoreApi method), 141

delete_project() (krake.client.openstack.OpenStackApi
method), 155

delete_role() (krake.client.core.CoreApi method),
141

delete_role_binding()
(krake.client.core.CoreApi method), 141

DeleteFailed, 179
DependencyCycleException, 175
DependencyException, 175
DependencyGraph (class in krake.controller.gc), 176
depends() (in module rok.fixtures), 214
deserialize() (krake.api.helpers.QueryFlag

method), 135
deserialize() (krake.data.serializable.Serializable

class method), 191
detail (krake.api.helpers.HttpProblem attribute), 134
domain_id (krake.data.infrastructure.ProjectReference

attribute), 203
domain_name (krake.data.infrastructure.UserReference

attribute), 203
done() (krake.controller.WorkQueue method), 163

E
empty() (krake.controller.WorkQueue method), 163
error_log() (in module krake.api.middlewares), 137
EtcdClient (class in krake.api.database), 129
Event (class in krake.api.database), 129
event (krake.api.database.Event attribute), 129
EventType (class in krake.api.database), 129
Executor (class in krake.controller), 160

F
field_for_schema() (in module

krake.data.serializable), 193
fields_ignored_by_creation()

(krake.data.serializable.Serializable class
method), 191

fixture() (in module rok.fixtures), 214
format_kwargs() (krake.data.Key method), 186
format_object() (krake.data.Key method), 186
format_openstack_error() (in module

krake.controller.magnum), 183
full() (krake.controller.WorkQueue method), 163

G
GarbageCollector (class in krake.controller.gc),

177
generate_magnum_cluster_name() (in module

krake.controller.magnum), 183
get() (krake.api.database.Session method), 132
get() (krake.controller.WorkQueue method), 163
get_api_method() (krake.controller.gc.GarbageCollector

method), 177
get_direct_dependents()

(krake.controller.gc.DependencyGraph
method), 176

224 Index

Krake, Release 1.0.0

get_immutables() (krake.controller.kubernetes.application.KubernetesClient
method), 168

get_kubernetes_resource_idx() (in module
krake.controller.kubernetes.application), 170

get_resource_api()
(krake.controller.kubernetes.application.KubernetesClient
method), 168

GlobalCloud (class in krake.data.infrastructure), 200
GlobalCloud.Schema (class in

krake.data.infrastructure), 200
GlobalCloudList (class in

krake.data.infrastructure), 200
GlobalCloudList.Schema (class in

krake.data.infrastructure), 200
GlobalInfrastructureProvider (class in

krake.data.infrastructure), 201
GlobalInfrastructureProvider.Schema

(class in krake.data.infrastructure), 201
GlobalInfrastructureProviderList (class in

krake.data.infrastructure), 201
GlobalInfrastructureProviderList.Schema

(class in krake.data.infrastructure), 201
GlobalMetric (class in krake.data.core), 194
GlobalMetric.Schema (class in krake.data.core),

194
GlobalMetricList (class in krake.data.core), 195
GlobalMetricList.Schema (class in

krake.data.core), 195
GlobalMetricsProvider (class in

krake.data.core), 195
GlobalMetricsProvider.Schema (class in

krake.data.core), 195
GlobalMetricsProviderList (class in

krake.data.core), 195
GlobalMetricsProviderList.Schema (class in

krake.data.core), 195

H
handle_resource()

(krake.controller.gc.GarbageCollector
method), 177

handle_resource()
(krake.controller.kubernetes.application.KubernetesApplicationController
method), 165

handle_resource()
(krake.controller.kubernetes.cluster.KubernetesClusterController
method), 172

Heartbeat (class in krake.api.helpers), 133
heartbeat() (krake.api.helpers.Heartbeat method),

134
hooks (krake.controller.kubernetes.application.KubernetesApplicationController

attribute), 165
hooks (krake.data.kubernetes.ApplicationSpec at-

tribute), 205

HookType (class in krake.controller.kubernetes.application),
170

HookType (class in krake.controller.kubernetes.cluster),
174

http_session() (in module krake.api.app), 124
HttpProblem (class in krake.api.helpers), 134
HttpProblem.Schema (class in krake.api.helpers),

135
HttpProblemError, 135
HttpProblemTitle (class in krake.api.helpers), 135

I
ImSpec (class in krake.data.infrastructure), 201
ImSpec.Schema (class in krake.data.infrastructure),

201
InfrastructureApi (class in

krake.client.infrastructure), 145
InfrastructureProvider (class in

krake.data.infrastructure), 201
InfrastructureProvider.Schema (class in

krake.data.infrastructure), 202
InfrastructureProviderList (class in

krake.data.infrastructure), 202
InfrastructureProviderList.Schema (class

in krake.data.infrastructure), 202
InfrastructureProviderRef (class in

krake.data.infrastructure), 202
InfrastructureProviderRef.Schema (class in

krake.data.infrastructure), 202
InfrastructureProviderSpec (class in

krake.data.infrastructure), 202
InfrastructureProviderSpec.Schema (class

in krake.data.infrastructure), 202
instance (krake.api.helpers.HttpProblem attribute),

134
InvalidClusterTemplateType, 179
is_base_generic() (in module

krake.data.serializable), 193
is_generic() (in module krake.data.serializable),

193
is_generic_subtype() (in module

krake.data.serializable), 193
is_in_deletion() (krake.controller.gc.GarbageCollector

static method), 177
is_qualified_generic() (in module

krake.data.serializable), 194

J
joint() (in module krake.controller), 163

K
KafkaSpec (class in krake.data.core), 195
KafkaSpec.Schema (class in krake.data.core), 195
Key (class in krake.data), 185

Index 225

Krake, Release 1.0.0

key (krake.api.database.Revision attribute), 130
keycloak_authentication() (in module

krake.api.auth), 127
keystone_authentication() (in module

krake.api.auth), 127
kind (krake.data.kubernetes.ClusterNode attribute), 208
kind (krake.data.serializable.ApiObject attribute), 187
krake (module), 122
krake.api (module), 124
krake.api.app (module), 124
krake.api.auth (module), 125
krake.api.database (module), 128
krake.api.helpers (module), 133
krake.api.middlewares (module), 137
krake.client (module), 138
krake.client.core (module), 139
krake.client.infrastructure (module), 145
krake.client.kubernetes (module), 150
krake.client.openstack (module), 154
krake.controller (module), 158
krake.controller.gc (module), 175
krake.controller.kubernetes.application

(module), 164
krake.controller.kubernetes.cluster

(module), 171
krake.controller.magnum (module), 178
krake.controller.scheduler (module), 174
krake.data (module), 185
krake.data.core (module), 194
krake.data.infrastructure (module), 199
krake.data.kubernetes (module), 204
krake.data.serializable (module), 187
kube_controller_triggered

(krake.data.kubernetes.ApplicationStatus
attribute), 206

kube_controller_triggered
(krake.data.kubernetes.ClusterStatus attribute),
211

kubeconfig (krake.controller.kubernetes.application.KubernetesClient
attribute), 166

kubeconfig (krake.data.kubernetes.ClusterSpec at-
tribute), 210

kubernetes_api (krake.controller.kubernetes.application.KubernetesApplicationController
attribute), 164

kubernetes_api (krake.controller.kubernetes.cluster.KubernetesClusterController
attribute), 171

KubernetesApi (class in krake.client.kubernetes),
150

KubernetesApplicationController (class in
krake.controller.kubernetes.application), 164

KubernetesApplicationObserver (class in
krake.controller.kubernetes.application), 169

KubernetesClient (class in
krake.controller.kubernetes.application),

166
KubernetesClusterController (class in

krake.controller.kubernetes.cluster), 171
KubernetesClusterObserver (class in

krake.controller.kubernetes.cluster), 173

L
last_applied_manifest

(krake.data.kubernetes.ApplicationStatus
attribute), 206

last_applied_tosca
(krake.data.kubernetes.ClusterStatus attribute),
211

last_observed_manifest
(krake.data.kubernetes.ApplicationStatus
attribute), 206

list_all_applications()
(krake.client.kubernetes.KubernetesApi
method), 151

list_all_clouds()
(krake.client.infrastructure.InfrastructureApi
method), 146

list_all_clusters()
(krake.client.kubernetes.KubernetesApi
method), 151

list_all_infrastructure_providers()
(krake.client.infrastructure.InfrastructureApi
method), 146

list_all_magnum_clusters()
(krake.client.openstack.OpenStackApi method),
155

list_all_projects()
(krake.client.openstack.OpenStackApi method),
155

list_and_watch() (krake.controller.Reflector
method), 162

list_app() (krake.controller.kubernetes.application.KubernetesApplicationController
method), 165

list_applications()
(krake.client.kubernetes.KubernetesApi
method), 151

list_clouds() (krake.client.infrastructure.InfrastructureApi
method), 147

list_cluster() (krake.controller.kubernetes.cluster.KubernetesClusterController
method), 172

list_clusters() (krake.client.kubernetes.KubernetesApi
method), 151

list_global_clouds()
(krake.client.infrastructure.InfrastructureApi
method), 147

list_global_infrastructure_providers()
(krake.client.infrastructure.InfrastructureApi
method), 147

226 Index

Krake, Release 1.0.0

list_global_metrics()
(krake.client.core.CoreApi method), 141

list_global_metrics_providers()
(krake.client.core.CoreApi method), 141

list_infrastructure_providers()
(krake.client.infrastructure.InfrastructureApi
method), 147

list_magnum_clusters()
(krake.client.openstack.OpenStackApi method),
155

list_metrics() (krake.client.core.CoreApi method),
141

list_metrics_providers()
(krake.client.core.CoreApi method), 141

list_projects() (krake.client.openstack.OpenStackApi
method), 155

list_resource() (krake.controller.Reflector
method), 162

list_role_bindings() (krake.client.core.CoreApi
method), 141

list_roles() (krake.client.core.CoreApi method),
142

ListMetadata (class in krake.data.core), 195
ListMetadata.Schema (class in krake.data.core),

196
ListQuery (class in krake.api.helpers), 135
load() (in module krake.api.helpers), 136
load_authentication() (in module

krake.api.app), 125
load_authorizer() (in module krake.api.app), 125
load_instance() (krake.api.database.Session

method), 132
load_yaml_config() (in module krake), 123
log_response() (krake.controller.kubernetes.application.KubernetesClient

static method), 168

M
MagnumClusterController (class in

krake.controller.magnum), 179
make_create_request_schema() (in module

krake.api.helpers), 136
make_csr() (in module krake.controller.magnum), 183
make_keystone_session() (in module

krake.controller.magnum), 184
make_kubeconfig() (in module

krake.controller.magnum), 184
make_magnum_client() (in module

krake.controller.magnum), 184
mangled_observer_schema

(krake.data.kubernetes.ApplicationStatus
attribute), 206

manifest (krake.data.kubernetes.ApplicationSpec at-
tribute), 204

mapping (in module rok.fixtures), 214

matches() (krake.data.Key method), 186
merge() (krake.ConfigurationOptionMapper method),

123
message (krake.data.kubernetes.ClusterNodeCondition

attribute), 209
Metadata (class in krake.data.core), 196
Metadata.Schema (class in krake.data.core), 196
Metric (class in krake.data.core), 196
Metric.Schema (class in krake.data.core), 196
MetricAction (class in rok.parser), 215
MetricList (class in krake.data.core), 196
MetricList.Schema (class in krake.data.core), 196
MetricRef (class in krake.data.core), 196
MetricRef.Schema (class in krake.data.core), 196
metrics (krake.data.kubernetes.ClusterSpec attribute),

210
metrics_reasons (krake.data.infrastructure.CloudStatus

attribute), 200
metrics_reasons (krake.data.kubernetes.ClusterStatus

attribute), 211
MetricSpec (class in krake.data.core), 196
MetricSpec.Schema (class in krake.data.core), 196
MetricSpecProvider (class in krake.data.core), 196
MetricSpecProvider.Schema (class in

krake.data.core), 196
MetricsProvider (class in krake.data.core), 196
MetricsProvider.Schema (class in

krake.data.core), 197
MetricsProviderList (class in krake.data.core),

197
MetricsProviderList.Schema (class in

krake.data.core), 197
MetricsProviderSpec (class in krake.data.core),

197
MetricsProviderSpec.Schema (class in

krake.data.core), 197
ModelizedSchema (class in krake.data.serializable),

187
modified (krake.api.database.Revision attribute), 130
mutually_exclusive_group() (in module

rok.parser), 217

N
name (krake.data.infrastructure.ProjectReference at-

tribute), 203
name (krake.data.kubernetes.ClusterNodeMetadata at-

tribute), 209
namespace (krake.api.auth.AuthorizationRequest at-

tribute), 126
nodes (krake.data.kubernetes.ClusterStatus attribute),

211

O
observe_resource() (krake.controller.Observer

Index 227

Krake, Release 1.0.0

method), 161
Observer (class in krake.controller), 160
observer_schema (krake.data.kubernetes.ApplicationSpec

attribute), 205
observer_time_step

(krake.controller.kubernetes.application.KubernetesApplicationController
attribute), 165

observer_time_step
(krake.controller.kubernetes.cluster.KubernetesClusterController
attribute), 172

observers (krake.controller.kubernetes.application.KubernetesApplicationController
attribute), 165

observers (krake.controller.kubernetes.cluster.KubernetesClusterController
attribute), 172

ObserverSchemaError, 212
on_creating() (krake.controller.magnum.MagnumClusterController

method), 180
on_pending() (krake.controller.magnum.MagnumClusterController

method), 180
on_received_deleted()

(krake.controller.gc.GarbageCollector
method), 177

on_received_new()
(krake.controller.gc.GarbageCollector
method), 178

on_received_update()
(krake.controller.gc.GarbageCollector
method), 178

on_reconciling() (krake.controller.magnum.MagnumClusterController
method), 180

on_running() (krake.controller.magnum.MagnumClusterController
method), 181

on_status_update()
(krake.controller.kubernetes.application.KubernetesApplicationController
method), 166

on_status_update()
(krake.controller.kubernetes.cluster.KubernetesClusterController
method), 173

open() (krake.client.Client method), 138
OpenStackApi (class in krake.client.openstack), 154
OpenstackAuthMethod (class in

krake.data.infrastructure), 202
OpenstackAuthMethod.Schema (class in

krake.data.infrastructure), 202
OpenstackSpec (class in krake.data.infrastructure),

202
OpenstackSpec.Schema (class in

krake.data.infrastructure), 202

P
ParserSpec (class in rok.parser), 215
Password (class in krake.data.infrastructure), 202
password (krake.data.infrastructure.ImSpec attribute),

201

password (krake.data.infrastructure.UserReference at-
tribute), 203

Password.Schema (class in
krake.data.infrastructure), 203

persistent() (in module krake.data), 186
plurals (krake.client.ApiClient attribute), 138
poll_resource() (krake.controller.kubernetes.application.KubernetesApplicationObserver

method), 170
poll_resource() (krake.controller.kubernetes.cluster.KubernetesClusterObserver

method), 174
poll_resource() (krake.controller.Observer

method), 161
PolymorphicContainer (class in

krake.data.serializable), 188
PolymorphicContainer.Schema (class in

krake.data.serializable), 189
PolymorphicContainerSchema (class in

krake.data.serializable), 189
prefix() (krake.data.Key method), 186
prepare() (krake.controller.Controller method), 159
prepare() (krake.controller.gc.GarbageCollector

method), 178
prepare() (krake.controller.kubernetes.application.KubernetesApplicationController

method), 166
prepare() (krake.controller.kubernetes.cluster.KubernetesClusterController

method), 173
prepare() (krake.controller.magnum.MagnumClusterController

method), 181
prepare() (krake.controller.scheduler.Scheduler

method), 175
problem_response() (in module

krake.api.middlewares), 137
process_cluster()

(krake.controller.magnum.MagnumClusterController
method), 181

project (krake.data.infrastructure.Password attribute),
203

ProjectReference (class in
krake.data.infrastructure), 203

ProjectReference.Schema (class in
krake.data.infrastructure), 203

PrometheusSpec (class in krake.data.core), 197
PrometheusSpec.Schema (class in

krake.data.core), 197
protected() (in module krake.api.auth), 127
put() (krake.api.database.Session method), 132
put() (krake.controller.WorkQueue method), 163

Q
QueryFlag (class in krake.api.helpers), 135

R
randstr() (in module krake.controller.magnum), 184
rbac() (in module krake.api.auth), 128

228 Index

Krake, Release 1.0.0

read_application()
(krake.client.kubernetes.KubernetesApi
method), 151

read_ca_certificate() (in module
krake.controller.magnum), 184

read_cloud() (krake.client.infrastructure.InfrastructureApi
method), 147

read_cluster() (krake.client.kubernetes.KubernetesApi
method), 152

read_global_cloud()
(krake.client.infrastructure.InfrastructureApi
method), 147

read_global_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 147

read_global_metric() (krake.client.core.CoreApi
method), 142

read_global_metrics_provider()
(krake.client.core.CoreApi method), 142

read_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 147

read_magnum_cluster() (in module
krake.controller.magnum), 184

read_magnum_cluster()
(krake.client.openstack.OpenStackApi method),
156

read_magnum_cluster_template() (in module
krake.controller.magnum), 185

read_metric() (krake.client.core.CoreApi method),
142

read_metrics_provider()
(krake.client.core.CoreApi method), 142

read_project() (krake.client.openstack.OpenStackApi
method), 156

read_role() (krake.client.core.CoreApi method), 142
read_role_binding() (krake.client.core.CoreApi

method), 142
readonly_fields()

(krake.data.serializable.Serializable class
method), 191

Reason (class in krake.data.core), 197
reason (krake.data.kubernetes.ClusterNodeCondition

attribute), 209
Reason.Schema (class in krake.data.core), 197
ReasonCode (class in krake.data.core), 197
reconcile_kubernetes_resource()

(krake.controller.magnum.MagnumClusterController
method), 181

reconcile_magnum_cluster()
(krake.controller.magnum.MagnumClusterController
method), 182

ReconcileFailed, 182
Reflector (class in krake.controller), 161

register() (krake.data.serializable.PolymorphicContainer
class method), 189

register() (krake.data.serializable.PolymorphicContainerSchema
class method), 190

register_service() (in module
krake.controller.kubernetes.application),
169

register_service() (in module
krake.controller.kubernetes.cluster), 173

register_task() (krake.controller.Controller
method), 159

remove_none_values()
(krake.api.helpers.HttpProblem method),
135

remove_none_values()
(krake.api.helpers.HttpProblem.Schema class
method), 135

remove_resource()
(krake.controller.gc.DependencyGraph
method), 176

request() (rok.fixtures.BaseUrlSession method), 212
resize_magnum_cluster() (in module

krake.controller.magnum), 185
Resolver (class in rok.fixtures), 213
resource (krake.api.auth.AuthorizationRequest at-

tribute), 126
resource_apis (krake.controller.kubernetes.application.KubernetesClient

attribute), 166
resource_received()

(krake.controller.gc.GarbageCollector
method), 178

resource_ref() (in module krake.data.core), 199
ResourceRef (class in krake.data.core), 197
ResourceRef.Schema (class in krake.data.core), 197
ResourceWithDependentsException, 178
retries (krake.data.kubernetes.ClusterStatus at-

tribute), 211
retry() (krake.controller.Controller method), 159
retry_transaction() (in module

krake.api.middlewares), 137
rev (krake.api.database.Event attribute), 129
Revision (class in krake.api.database), 129
revision() (in module krake.api.database), 133
rok (module), 212
rok.fixtures (module), 212
rok.parser (module), 215
Role (class in krake.data.core), 197
Role.Schema (class in krake.data.core), 197
RoleBinding (class in krake.data.core), 198
RoleBinding.Schema (class in krake.data.core), 198
RoleBindingList (class in krake.data.core), 198
RoleBindingList.Schema (class in

krake.data.core), 198
RoleList (class in krake.data.core), 198

Index 229

Krake, Release 1.0.0

RoleList.Schema (class in krake.data.core), 198
RoleRule (class in krake.data.core), 198
RoleRule.Schema (class in krake.data.core), 198
run() (in module krake.controller), 164
run() (krake.controller.Controller method), 160
run() (krake.controller.Observer method), 161
running_on (krake.data.kubernetes.ApplicationStatus

attribute), 206
running_on (krake.data.kubernetes.ClusterStatus at-

tribute), 211

S
scheduled (krake.data.kubernetes.ApplicationStatus

attribute), 206
scheduled (krake.data.kubernetes.ClusterStatus at-

tribute), 211
scheduled_or_deleting()

(krake.controller.kubernetes.application.KubernetesApplicationController
static method), 166

scheduled_to (krake.data.kubernetes.ApplicationStatus
attribute), 206

scheduled_to (krake.data.kubernetes.ClusterStatus
attribute), 211

Scheduler (class in krake.controller.scheduler), 174
Schema (krake.data.serializable.PolymorphicContainer

attribute), 188
Schema (krake.data.serializable.Serializable attribute),

191
search_config() (in module krake), 123
Serializable (class in krake.data.serializable), 190
Serializable.Schema (class in

krake.data.serializable), 191
SerializableMeta (class in

krake.data.serializable), 193
serialize() (krake.data.serializable.Serializable

method), 192
services (krake.data.kubernetes.ApplicationStatus at-

tribute), 206
Session (class in krake.api.database), 130
session() (in module krake.api.helpers), 136
session() (in module rok.fixtures), 215
setup_logging() (in module krake), 124
shutdown() (krake.controller.kubernetes.application.KubernetesClient

method), 169
shutdown_cert (krake.data.kubernetes.ApplicationStatus

attribute), 207
shutdown_grace_period

(krake.data.kubernetes.ApplicationStatus
attribute), 207

shutdown_grace_time
(krake.data.kubernetes.ApplicationSpec at-
tribute), 205

shutdown_key (krake.data.kubernetes.ApplicationStatus
attribute), 207

shutdown_token (krake.data.kubernetes.ApplicationStatus
attribute), 207

sigmoid_delay() (in module krake.controller), 164
simple_on_receive() (krake.controller.Controller

method), 160
size() (krake.controller.WorkQueue method), 163
state (krake.data.infrastructure.CloudStatus attribute),

200
state (krake.data.kubernetes.ApplicationStatus at-

tribute), 206
state (krake.data.kubernetes.ClusterStatus attribute),

211
static_authentication() (in module

krake.api.auth), 128
StaticSpec (class in krake.data.core), 198
StaticSpec.Schema (class in krake.data.core), 198
Status (class in krake.data.core), 198
status (krake.api.helpers.HttpProblem attribute), 134
status (krake.data.kubernetes.ClusterNode attribute),

208
status (krake.data.kubernetes.ClusterNodeCondition

attribute), 209
Status.Schema (class in krake.data.core), 198
stop() (krake.controller.Executor method), 160
StoreDict (class in rok.parser), 216
subparser() (rok.parser.ParserSpec method), 216
subresources_fields()

(krake.data.serializable.Serializable class
method), 192

T
table (krake.data.core.KafkaSpec attribute), 195
title (krake.api.helpers.HttpProblem attribute), 134
token (krake.data.infrastructure.ImSpec attribute), 201
tosca (krake.data.kubernetes.ApplicationSpec at-

tribute), 204
TransactionError, 133
type (krake.api.helpers.HttpProblem attribute), 134
type (krake.data.kubernetes.ClusterNodeCondition at-

tribute), 209

U
unregister_service() (in module

krake.controller.kubernetes.application),
169

unregister_service() (in module
krake.controller.kubernetes.cluster), 173

update() (krake.data.serializable.PolymorphicContainer
method), 189

update() (krake.data.serializable.Serializable
method), 192

update_application()
(krake.client.kubernetes.KubernetesApi
method), 152

230 Index

Krake, Release 1.0.0

update_application_binding()
(krake.client.kubernetes.KubernetesApi
method), 152

update_application_complete()
(krake.client.kubernetes.KubernetesApi
method), 152

update_application_shutdown()
(krake.client.kubernetes.KubernetesApi
method), 152

update_application_status()
(krake.client.kubernetes.KubernetesApi
method), 153

update_cloud() (krake.client.infrastructure.InfrastructureApi
method), 148

update_cloud_status()
(krake.client.infrastructure.InfrastructureApi
method), 148

update_cluster() (krake.client.kubernetes.KubernetesApi
method), 153

update_cluster_binding()
(krake.client.kubernetes.KubernetesApi
method), 153

update_cluster_status()
(krake.client.kubernetes.KubernetesApi
method), 153

update_global_cloud()
(krake.client.infrastructure.InfrastructureApi
method), 148

update_global_cloud_status()
(krake.client.infrastructure.InfrastructureApi
method), 148

update_global_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 148

update_global_metric()
(krake.client.core.CoreApi method), 143

update_global_metrics_provider()
(krake.client.core.CoreApi method), 143

update_infrastructure_provider()
(krake.client.infrastructure.InfrastructureApi
method), 149

update_last_applied_manifest_from_resp()
(in module krake.controller.kubernetes.application),
170

update_last_observed_manifest_from_resp()
(in module krake.controller.kubernetes.application),
171

update_magnum_cluster()
(krake.client.openstack.OpenStackApi method),
156

update_magnum_cluster_binding()
(krake.client.openstack.OpenStackApi method),
156

update_magnum_cluster_status()

(krake.client.openstack.OpenStackApi method),
156

update_metric() (krake.client.core.CoreApi
method), 143

update_metrics_provider()
(krake.client.core.CoreApi method), 143

update_project() (krake.client.openstack.OpenStackApi
method), 157

update_project_status()
(krake.client.openstack.OpenStackApi method),
157

update_resource()
(krake.controller.gc.DependencyGraph
method), 176

update_role() (krake.client.core.CoreApi method),
143

update_role_binding()
(krake.client.core.CoreApi method), 144

url (krake.data.core.KafkaSpec attribute), 195
url (krake.data.infrastructure.ImSpec attribute), 201
use_schema() (in module krake.api.helpers), 136
user (krake.data.infrastructure.Password attribute), 203
username (krake.data.infrastructure.ImSpec attribute),

201
username (krake.data.infrastructure.UserReference at-

tribute), 203
UserReference (class in krake.data.infrastructure),

203
UserReference.Schema (class in

krake.data.infrastructure), 204

V
validate_key() (in module krake.data.core), 199
validate_value() (in module krake.data.core), 199
value (krake.api.database.Event attribute), 129
value_column (krake.data.core.KafkaSpec attribute),

195
Verb (class in krake.data.core), 198
verb (krake.api.auth.AuthorizationRequest attribute),

126
version (krake.api.database.Revision attribute), 130
version (krake.data.infrastructure.Password attribute),

202

W
wait_for_running()

(krake.controller.magnum.MagnumClusterController
method), 182

watch() (krake.api.database.Session method), 133
watch() (krake.api.database.Watcher method), 133
watch() (krake.client.Watcher method), 139
watch_all_applications()

(krake.client.kubernetes.KubernetesApi
method), 153

Index 231

Krake, Release 1.0.0

watch_all_clouds()
(krake.client.infrastructure.InfrastructureApi
method), 149

watch_all_clusters()
(krake.client.kubernetes.KubernetesApi
method), 154

watch_all_infrastructure_providers()
(krake.client.infrastructure.InfrastructureApi
method), 149

watch_all_magnum_clusters()
(krake.client.openstack.OpenStackApi method),
157

watch_all_projects()
(krake.client.openstack.OpenStackApi method),
157

watch_applications()
(krake.client.kubernetes.KubernetesApi
method), 154

watch_clouds() (krake.client.infrastructure.InfrastructureApi
method), 149

watch_clusters() (krake.client.kubernetes.KubernetesApi
method), 154

watch_global_clouds()
(krake.client.infrastructure.InfrastructureApi
method), 149

watch_global_infrastructure_providers()
(krake.client.infrastructure.InfrastructureApi
method), 149

watch_global_metrics()
(krake.client.core.CoreApi method), 144

watch_global_metrics_providers()
(krake.client.core.CoreApi method), 144

watch_infrastructure_providers()
(krake.client.infrastructure.InfrastructureApi
method), 150

watch_magnum_clusters()
(krake.client.openstack.OpenStackApi method),
157

watch_metrics() (krake.client.core.CoreApi
method), 144

watch_metrics_providers()
(krake.client.core.CoreApi method), 144

watch_projects() (krake.client.openstack.OpenStackApi
method), 158

watch_resource() (krake.controller.Reflector
method), 162

watch_role_bindings()
(krake.client.core.CoreApi method), 144

watch_roles() (krake.client.core.CoreApi method),
145

Watcher (class in krake.api.database), 133
Watcher (class in krake.client), 139
WatchEvent (class in krake.data.core), 199
WatchEvent.Schema (class in krake.data.core), 199

WatchEventType (class in krake.data.core), 199
worker_count (krake.controller.kubernetes.application.KubernetesApplicationController

attribute), 165
worker_count (krake.controller.kubernetes.cluster.KubernetesClusterController

attribute), 172
WorkQueue (class in krake.controller), 162

232 Index

	Quickstart
	User Documentation
	Rok documentation
	The kube API
	The infra API
	Common options
	Warnings

	Configuration
	Configuration file or command-line options
	Krake configuration
	Controllers configuration
	Common configuration:
	Rok configuration

	Custom Observer Schema
	Purpose
	Format
	Usage

	User Stories
	Introduction
	Demonstration of basic commands and workflow
	Scheduling an Application using Labels and LabelConstraints
	Scheduling an Application Using Metrics
	OpenStack backends
	Creation and deployment of a stateful application
	Infrastructure providers
	Scheduling a Cluster using Labels and LabelConstraints
	Scheduling a Cluster using Metrics
	Horizontal Cluster Scaling

	HTTP Problem documentation
	not-found-error
	transaction-error
	update-error
	invalid-keystone-token
	invalid-keycloak-token
	resource-already-exists

	Administrator Documentation
	Set up Krake with Ansible
	Prerequisites
	Krake infrastructure deployment
	Krake Ansible directory structure
	Access through the gateway

	Variables
	Variables definition

	Inventory
	Inventory plugin
	Inventory structure

	Bootstrapping
	Usage
	Structure
	Existing definitions

	Security principles
	Overview
	Keystone authentication
	Keycloak authentication
	Certificate authentication
	RBAC Authorization
	Security Guidelines
	CORS

	Developer Documentation
	Architecture
	API
	Control Plane

	Concepts
	Overview
	API Conventions
	Control Plane
	Authentication and Authorization

	Directories
	Design Principles
	API
	Control Logic
	Architecture
	Extensibility
	Availability
	Development

	Scheduling
	Application handler
	Cluster handler
	Magnum cluster handler
	Metrics and Metrics Providers
	Constraints

	Application hooks
	Complete
	Shutdown
	TLS
	Examples

	Kubernetes Application Controller
	Reconciliation loop

	Kubernetes Application Observer
	Reconciliation
	Kubernetes Application Observer

	Kubernetes Cluster Controller
	Kubernetes Cluster Observer
	Kubernetes Cluster Status Polling
	States
	Node Health

	Infrastructure Controller
	Reconciliation loop
	States

	Garbage Collection
	Dependency mechanism
	Overview
	Garbage collection workflow
	Dependency graph

	API Generation
	Role
	Usage
	Templating
	Generated elements

	TOSCA
	Introduction
	TOSCA Template
	TOSCA/CSAR Workflow
	Examples

	Krake Reference
	Module hierarchy
	Krake
	API Server
	Client
	Controllers
	Data Abstraction

	Client Reference
	Fixtures
	Command Line Parser

	Python Module Index
	Index

